Manfaat Feed Additives pada Ruminansia: Ulasan Singkat

Yanuartono Yanuartono, Indarjulianto Soedarmanto, Alsi Dara Paryuni

Abstract


ABSTRAK. Seiring dengan meningkatnya permintaan produk hewani, maka kebutuhan pakan ruminansia juga semakin meningkat. Pemenuhan kebutuhan pakan bertujuan untuk menghasilkan produk hewan yang lebih baik, memanfaatkan sumber daya pakan yang tersedia secara efisien, dan memaksimalkan keuntungan peternak. Salah satu upaya untuk memaksimalkan produk hewani adalah dengan menambahkan feed additives pada pakan. Bahan tambahan pakan merupakan bahan pakan non-nutrisi yang ditambahkan ke dalam campuran pakan untuk tujuan tertentu dan saat ini mempunyai peranan penting dalam berbagai bidang produksi ternak ruminansia. Berbagai bahan tambahan pakan telah digunakan di bidang peternakan untuk meningkatkan produksi ternak, meningkatkan efisiensi sumber daya pakan yang tersedia, dan memaksimalkan kinerja ternak ruminansia. Artikel singkat ini mengulas manfaat feed additive bagi ternak ruminansia.

Kata kunci: Feed additives, produksi ternak, non-nutrisi, ruminansia

Benefits of Feed Additives for Ruminants: A Brief Review

ABSTRACT. As demand for animal products increases, the need for ruminant feed also increases. Fulfilling feed needs aims at better animal production, efficiently utilizing available feed resources, and maximizing farmers' profits. One effort to maximize animal products is by adding feed additives to animal feed. Feed additives are non-nutrient feed ingredients added to feed mixtures for specific purposes and currently have an essential role in various fields of ruminant livestock production. Various feed additives have been used in the livestock sector to improve livestock production, increase the efficiency of available feed resources, and maximize the performance of ruminant livestock. This short article reviews the benefits of feed additives for ruminant livestock.

Keywords


Feed additives, livestock production, non-nutrient, ruminants

References


Abd El Tawab, A. M., A. M. Kholif, N. E. El-Bordeny, H. M. Elsayed, & N. A. H. Selima. 2022. Feed utilization and lactational performance of Damascus Goats fed a diet. Egypt. J. Chem. 65 :407 -418.

Abd-Rabou, H. S., H. M. M. Mansour, O. H. Matloup, S. M. A. Sallam, & M. A. Elazab. 2023. Impact of mixing coriander oil with goat feed on the chemical, microbiological and sensory characterizations of bio rayeb milk. Sci Rep. 13:11215. doi: 10.1038/s41598-023-38047-3.

Addisu, S. H. 2016. Effect of dietary tannin source feeds on Ruminal fermentation and production of cattle; a review. Online J. Anim. Feed Res. 6: 45-56.

Ahmed, B. M. & M. S. Salah. 2002. Effect of yeast cultures an additive to sheep feed on performance, digestibility, nitrogen balance and rumen fermentation. Journal of King Saudi University. Journal of Agriculture Science. 14:1-3.

Ahmed, M. M. N., Z. S. H. Ismail, & A. A. A. Abdel-Wareth. 2018. Application of prebiotics as feed additives in poultry nutrition - A review. Egypt.Poult. Sci. 38: 207-222.

Alemu, A. W., A. Romero-Pérez, R. C. Araujo, & K. A. Beauchemin. 2019. Effect of encapsulated nitrate and microencapsulated blend of essential oils on growth performance and methane emissions from beef steers fed backgrounding diets. Animals. 9 :21. https://doi.org/10.3390/ani9010021.

Almeida, D. V., V. Kolinjivadi, T. Ferrando, B. Roy, H. Herrera, M. V. Gonçalves, & G. Van Hecken. 2023. The “Greening” of Empire: The European Green Deal as the EU first agenda. Political Geography. 105: 102925. https://doi.org/10.1016/j.polgeo.2023.102925

Alonso-Díaz, M. A., J. F. F. Torres-Acosta, C. A. Sandoval-Castro, & H. Hoste 2010. Tannins in tropical tree fodders fed to small ruminants: a friendly foe? Small Ruminant Research, 89: 164-173. https://doi.org/10.1016/j.smallrumres.2009.12.040

Anil, S., Yadav, V. M. Anand, R. Chouraddi, S. K. Yadav, A. K. Singh, P. M. Nair, Prabhakar, J. Tiwari, & A. Durge. 2022. Review on the role of exogenous fibrolytic enzymes in ruminant nutrition. Current Journal of Applied Science and Technology 41: 45-58. DOI: 10.9734/CJAST/2022/v41i363966

Anjum, M. I., S. Javaid, M. S. Ansar, & A. Ghaffar. 2018. Effects of yeast (Saccharomyces cerevisiae) supplementation on intake, digestibility, rumen fermentation and milk yield in Nili-Ravi buffaloes. Iran J Vet Res. 19: 96-100.

Appuhamy, J. A. D. R. N., A. B. Strathe, S. Jayasundara, C. Wagner-Riddle, J. Dijkstra, J. France, & E. Kebreab. 2013. Anti-methanogenic effects of monensin in dairy and beef cattle: a meta-analysis. J Dairy Sci. 96: 5161-5173. doi: 10.3168/jds.2012-5923.

Asemi-Esfahani, Z., B. Shareghi, S. Farhadian, & L. Momeni. 2022. Food additive dye–lysozyme complexation: Determination of binding constants and binding sites by fluorescence spectroscopy and modeling methods. Journal of Molecular Liquids. 363: 119749. https://doi.org/10.1016/j.molliq.2022.119749

Aslamyah, S., M. Y. Karim, & B. Badraeni. 2018. Effects of dosage of mix.microorganisms in feed raw materials fermentation containing Sargassum sp. on growth performance, chemical body composition and hepatosomatic index of Milkfish, Chanos chanos Forsskal. Torani Journal of Fisheries and Marine Science. 1: 59-70. https://doi.org/10.35911/torani.v1i2.4443

Auldist, M. J., L. C. Marett, J. S. Greenwood, M. Hannah, J. L. Jacobs, & W. J. Wales. 2013. Effects of different strategies for feeding supplements on milk production responses in cows grazing a restricted pasture allowance. J. Dairy Sci. 96 :1218–1231 http://dx.doi.org/ 10.3168/jds.2012-6079

Avila, A. S., M. A. Zambom, A. Faccenda, M. L. Fischer, F. A. Anschau, T. Venturini, R. C. R. Tinini, J. G. Dessbesell, & A. P. Faciola. 2020. Effects of Black Wattle (Acacia mearnsii) condensed tannins on intake, protozoa population, ruminal fermentation, and nutrient digestibility in Jersey Steers. Animals.10: 1011; doi:10.3390/ani10061011

Azzaz, H. H., H. A. Murad, A. M. Kholif, T. A. Morsy, A. M. Mansour, & H. M. El-Sayed. 2013. Increasing nutrients bioavailability by using fibrolytic enzymes in dairy buffaloes feeding. Journal of Biological Sciences.13: 234-241.DOI: 10.3923/jbs.2013.234.241

Baggio, M., V. N. Gouvêa, J. P. R. Barroso, A. A. Miszura, A. C. Limede, L. C. B. Soares, M. V. C. Ferraz Jr, A. C. S. Vicente, E. M. Ferreira, R. S. Marques, & A. V. Pires. 2023. Different combinations of monensin and narasin on growth performance, carcass traits, and ruminal fermentation characteristics of finishing beef cattle. Front. Vet. Sci. 10:1117639. doi: 10.3389/fvets.2023.111763

Baker, L. M., J. Kraft, T. P. Karnezos, & S. L. Greenwood. 2022. Review: The effects of dietary yeast and yeast-derived extracts on rumen microbiota and their function. Animal Feed Science and Technology. 294: 115476. https://doi.org/10.1016/j.anifeedsci.2022.115476

Barry, T. N. 1985. The role of condensed tannins in the nutritional value of Lotus pedunculatus for sheep. Rates of body and wool growth. Br J Nutr. 54:211-217. doi: 10.1079/bjn19850106.

Basmaeil, S. M., G.M. Suliman, M. A. Al Garadi, M. A. Al-Badwi, M. M. Abdelrahman, F. S. Al-Harbi, A. M. El-Waziry, I. A. Alhidary, & A. A. Swelum. 2023. Eects of increasing levels of lasalocid supplementation on growth performance, serum biochemistry, ruminal fermentation profile, in vitro nutrient digestibility, and gas production of growing goats. Front. Vet. Sci. 10:1181426. doi: 10.3389/fvets.2023.118142

Battelli, M., S. Colombini, G. M. Crovetto, G. Galassi, F. Abeni, F. Petrera, M. T. Manfredi, & L. Rapett. 2023. Condensed tannins fed to dairy goats: effects on digestibility, milk production, blood parameters, methane emission, and energy and nitrogen balances. J. Dairy Sci. S0022-0302(24)00024-9 https://doi.org/10.3168/jds.2023-24076

Beauchemin, K. A., L. M. Rode, & V. J. H. Sewalt. 1995. Fibrolytic enzymes increase fiber digestibility and growth rate of steers fed dry forages. Can. J. Anim. Sci. 75:641–644. https://doi.org/10.4141/cjas95-096

Beauchemin, K.A., D. Colombatto, D. P. Morgavi, & W. Z. Yang. 2003. Use of exogenous fibrolytic enzymes to improve feed utilization by ruminants. Journal of Animal Science. 81: E37-47. https://doi.org/10.2527/2003.8114_suppl_2E37x

Bedasso, G. T. 2021. The functional feed additives in animal nutrition: The substitute to antibiotics. Journal of Research in Agriculture and Animal Science. 8: 18-23.

Benchaar, C., S. Calsamiglia, A. V. Chaves, G. R. Fraser, D. Colombatto, T. A. McAllister, & K. A. Beauchemin. 2008. A review of plant-derived essential oils in ruminant nutrition and production. Animal Feed Science and Technology 145: 209–228. https://doi.org/10.1016/j.anifeedsci.2007.04.014

Benchaar, C., J. L. Duynisveld, & E. Charmley. 2006. effects of monensin and increasing dose levels of a mixture of essential oil compounds on intake, digestion and growth performance of beef cattle. Can. J. Anim. Sci. 86: 91–96. https://doi.org/10.4141/A05-027

Bismarck, D., J. Becker, E. Müller, V. Becher, L. Nau, & P. Mayer. 2022. Screening of antimicrobial activity of essential oils against bovine respiratory pathogens-focusing on pasteurella multocida. Planta Med. 88:274-281. doi: 10.1055/a-1726-9291.

Buryakov, N. P., A. Y. Zagarin, M. M. Fathala, & D. E. Aleshin. 2023. The role of supplementing a complex phytobiotic feed additive containing (castanea sativa mill) extract in combination with calcium butyrate, zinc-methionine and essential oils on growth indicators, blood profile and carcass quality of broiler chickens. Vet Sci. 10 :212. doi: 10.3390/vetsci10030212.

Busch, G., B. Kassas, M. Palma, & A. Risius. 2020. Perceptions of antibiotic use in livestock farming in Germany, Italy and the United States. Livest. Sci. 241: 104251. https://doi.org/10.1016/j.livsci.2020.104251

Butaye, P., L. A. Devriese, & F. Haesebrouck. 2003. Antimicrobial growth promoters used in animal feed: effects of less wellknown antibiotics on gram-positive bacteria. Clin Microbiol Rev. 16:175-88. doi: 10.1128/CMR.16.2.175-188.2003.

Butnariu, M. & I. Sarac. 2018. Essential oils from plants. Journal of Biotechnology and Biomedical Science.1: 36. doi : 10.1302/issn.2576-6694.jbbs-18-2489

Cabiddu, A., C. Delgadillo-Puga, M. Decandia, & G. Molle. 2019. extensive ruminant production systems and milk quality with emphasis on unsaturated fatty acids, volatile compounds, antioxidant protection degree and phenol content. Animals. 9:771. https://doi.org/10.3390/ani9100771

Cai, L., J. Yu, R. Hartanto, & D. Qi. 2021. Dietary Supplementation with Saccharomyces cerevisiae, Clostridium butyricum and Their Combination Ameliorate Rumen Fermentation and Growth Performance of Heat-Stressed Goats. Animals. 11:2116. https://doi.org/10.3390/ani11072116

Cai, S., J. Li, F. Z. Hu, K. Zhang, Y. Luo, B. Janto, R. Boissy, G. Ehrlich, & X. Dong. 2010. Cellulosilyticum ruminicola, a newly described rumen bacterium that possesses redundant fibrolytic-protein-encoding genes and degrades lignocellulose with multiple carbohydrate- borne fibrolytic enzymes. Appl Environ Microbiol. 76:3818-24. doi: 10.1128/AEM.03124-09.

Câmara, A., J. A. B. Afonso, C. L. Mendonça, & A. C. S. Vieira. 2013. Salinomycin effect on the prevention of ruminal lactic acidosis in sheep. ci. Anim. Bras., Goiânia. 14: 65-73. DOI: 10.5216/cab. v 14i1.3792

Caprarulo, V., V. Ventura, A. Amatucci, G. Ferronato, & G. Gilioli. 2022. Innovations for reducing methane emissions in livestock toward a sustainable system: Analysis of feed additive patents in ruminants. Animals. 12: 2760. https://doi.org/10.3390/ani12202760

Caprioli, G., G. Lupidi, & F. Maggi. 2019. Comparison of chemical composition and antioxidant activities of two Winter savory subspecies (Satureja montana subsp. variegata and Satureja montana subsp. montana) cultivated in Northern Italy. Nat Prod Res 33:3143–3147. https://doi.org/10.1080/14786419.2018.1516661

Caroprese, M., M. G. Ciliberti, R. Marino, A. Santillo, A. Sevi, & M. Albenzio. 2023. Essential oil supplementation in small ruminants: A review on their possible role in rumen fermentation, microbiota, and animal production. Dairy. 4:497-508. https://doi.org/10.3390/dairy4030033

Caroprese, M., M. G. Ciliberti, & M. Albenzio. 2019. Application of aromatic plants and their extracts in dairy animals. In Feed Additives: Aromatic Plants and Herbs in Animal Nutrition and Health, 1st ed.; Florou-Paneri, P., Christaki, E., Giannenas, I., Eds.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2019

Carrazco, A. V., C. B. Peterson, Y. Zhao, Y. Pan, J. J. McGlone, E. J. DePeters, & F. M. Mitloehner. 2020. The impact of essential oil feed supplementation on enteric gas emissions and production parameters from dairy cattle. Sustainability. 12:10347. https://doi.org/10.3390/su122410347

Cattaneo, L., V Lopreiato, F. Piccioli-Cappelli, E. Trevisi, & A. Minuti. 2023. Effect of supplementing live Saccharomyces cerevisiae yeast on performance, rumen function, and metabolism during the transition period in Holstein dairy cows. J. Dairy Sci. 106:4353–4365 https://doi.org/10.3168/jds.2022-23046

Cavallini, D., L. M. E. Mammi, A. Palmonari, R. García-González, J. D. Chapman, D. J. McLean, & A. Formigoni. 2022.Effect of an immunomodulatory feed additive in mitigating the stress responses in lactating dairy cows to a high concentrate diet challenge. Animals (Basel). 12:2129. doi: 10.3390/ani12162129.

Chattopadhyay, M. K. 2014. Use of antibiotics as feed additives: a burning question. Front Microbiol. 5:334. doi: 10.3389/fmicb.2014.00334.

Chaucheyras-Durand, F., N. D. Walker. & A. Bach. 2008. Effects of active dry yeasts on the rumen microbial ecosystem: past, present and future. Anim Feed Sci Technol. 145 :5–26. https://doi.org/10.1016/j.anifeedsci.2007.04.019

Chen, J., S. He, Z. Zhang, J. Li, X. Zhang, J. Li, J. Xu, P. Zheng, J. Xian, & Y. Lu. 2024. Application of organic acid salts as feed additives in some aquatic organisms: potassium diformate. Fishes. 9:85. https://doi.org/10.3390/fishes9030085

Chen, X., S. Shang, F. Yan, H. Jiang, G. Zhao, S. Tian, R. Chen, D. Chen, & Y. Dang. 2023. Antioxidant activities of essential oils and their major components in scavenging free radicals, inhibiting lipid oxidation and reducing cellular oxidative stress. Molecules. 28:4559. doi: 10.3390/molecules28114559.

Chen, X., Y. Gu, K. Singh, C. Shang, M. Barzegar, S. Jiang, & S. Huang. 2014. Maduramicin inhibits proliferation and induces apoptosis in myoblast cells. PLoS ONE 9: e115652. https://doi.org/10.1371/journal.pone.0115652

Cobellis, G., M. Trabalza, & Z. Yu. 2016. Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: A review. The Science of The Total Environment 545-546:556-568. doi:10.1016/j.scitotenv.2015.12.103

Corino, C. & R. Rossi. 2021. Antioxidants in Animal Nutrition. Antioxidants (Basel). 10:1877. doi: 10.3390/antiox10121877.

Crossland, W. L., L. O. Tedeschi, T. R. Callaway, M. D. Miller, W. B. Smith, & M. Cravey. 2017. Effects of rotating antibiotic and ionophore feed additives on volatile fatty acid production, potential for methane production, and microbial populations of steers consuming a moderate-forage diet. J Anim Sci. 95:4554-4567. doi: 10.2527/jas2017.1665.

Cruywagen, C. W. & W. H. van Zyl. 2008. Effects of a fungal enzyme cocktail treatment of high and low forage diets on lamb growth. Anim Feed Sci Technol. 145:151–158. doi: 10.1016/j.anifeedsci.2007.05.038.

Dann, H. M., J. R. Prockley, G. C. McCoy, M. F. Hutjens, & J. E. Garret. 2000. Effects of yeast cultures (Saccharomyces cerevisiae) on prepartum intake and postpartum intake and milk production of Jersey cows. J Dairy Sci. 83:123–127. doi: 10.3168/jds.S0022-0302(00)74863-6

da Silva Aguiar, F., L. R. Bezerra, M. A. Cordão, I. T. R. Cavalcante, J. P. F. de Oliveira, R. R. do Nascimento, B. B. de Souza, R. L. Oliveira, E. S. Pereira, & J. M. P. Filho. 2023. Effects of increasing levels of total tannins on intake, digestibility, and balance of nitrogen, water, and energy in hair lambs. Animals. 13:2497. https://doi.org/10.3390/ani13152497

Darabighane, B., A. Z. M. Salem, F. M. Aghjehgheshlagh, A. Mahdavi, A. Zarei, M. M. Y. Elghandour, & Z. López. 2019. Environmental efficiency of Saccharomyces cerevisiae on methane production in dairy and beef cattle via a meta-analysis. Environmental Science and Pollution Research 26:3651-3658. DOI:10.1007/s11356-018-3878-x

de Sousa, D. P., R. O. S. Damasceno, R. Amorati, H. A. Elshabrawy, R. D. de Castro, D. P. Bezerra, V. R. V. Nunes, R. C. Gomes, & T. C. Lima. 2023. Essential oils: Chemistry and pharmacological Activities. Biomolecules. 13:1144. https://doi.org/10.3390/biom13071144

Decker, E. A., C. C. Akoh, & R. S. Wilkes. 2012. Incorporation of (n-3) fatty acids in foods: challenges and opportunities. The Journal of Nutrition 142: 610–613. doi: 10.3945/jn.111.149328.

Denev, S. A., T. Z. Peeva, P. Radulova, N. Stancheva, G. Staykova, G. Beev, P. Todorova, & S. Tchobanova. 2007. Yeast cultures in ruminant nutrition. Bulg. J. Agric. Sci. 13: 357-374.

Dey, A., & P. S. De. 2014. Influence of condensed tannins from Ficus bengalensis leaves on feed utilization, milk production and antioxidant status of crossbred cows. Asian-Australasian Journal of Animal Science. 27: 342. doi: 10.5713/ajas.2013.13295.

Dey, S. & B. H. Nagababu. 2022. Applications of food color and bio-preservatives in the food and its effect on the human health. Food Chemistry Advances. 1: 100019. https://doi.org/10.1016/j.focha.2022.100019

Divekar, P. A., S. Narayana, B. A. Divekar, R. Kumar, B. G. Gadratagi, A. Ray, A. K. Singh, V. Rani, V. Singh, A. K. Singh, A. Kumar, R. P. Singh, R. S. Meena, & T. K. Behera. 2022. Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. Int J Mol Sci. 23:2690. doi: 10.3390/ijms23052690.

Dorantes-Iturbide, G., J. F. Orzuna-Orzuna, A. Lara-Bueno, G. D. Mendoza-Martínez, L. A. Miranda-Romero, & H. A. Lee-Rangel. 2022a. Essential oils as a dietary additive for small ruminants: a meta-analysis on performance, rumen parameters, serum metabolites, and product quality. Vet Sci. 9:475. doi: 10.3390/vetsci9090475.

Dorantes-Iturbide, G., J. F. Orzuna-Orzuna, A. Lara-Bueno, L. A. Miranda-Romero, G. D. Mendoza- Martínez, & P. A. Hernández-García, 2022b. Effects of a polyherbal dietary additive on performance, dietary energetics, carcass traits, and blood metabolites of finishing lambs. Metabolites. 12: 413. doi: 10.3390/metabo12050413.

Duffield. T. F., J. K. Merrill, & R. N. Bagg. 2012. Meta-analysis of the effects of monensin in beef cattle on feed efficiency, body weight gain, and dry matter intake. J. Anim. Sci. 90:4583–4592. doi: 10.2527/jas.2011-5018

Dutta, T. K., S. K. Yadav, & A. Chatterjee. 2019. Antibiotics as feed additives for livestock: human health concerns. Indian J. Anim. Hlth. 58: 121-136 Doi: https://doi.org/10.36062/ijah.58.2SPL.2019.121-136

Dynes, R. A., D. A. Henry, & D. G. Masters. 2003. Characterising forages for ruminant feeding Asian-Australasian Journal of Animal Sciences 16: 116-123.

https://doi.org/10.5713/ajas.2003.116

Edrington, T. S., T. R. Callaway, K. M. Bischoff, K. J. Genovese, R. O. Elder, R. C. Anderson, & D. J. Nisbet. 2003. Effect of feeding the ionophores monensin and laidlomycin propionate and the antimicrobial bambermycin to sheep experimentally infected with E. coli O157:H7 and Salmonella typhimurium. J Anim Sci. 81:553-560. doi: 10.2527/2003.812553x.

EFSA. 2023. Feed Additives. Feed additives - EFSA - European Union, https://www.efsa.europa.eu › topics › topic › feed-additi...

EFSA. 2022. Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Safety of a feed additive consisting of semduramicin sodium (Aviax 5%) for chickens for fattening (Phibro Animal Health s.a.). 20:e07432. doi: 10.2903/j.efsa.2022.7432.

El-Essawy, A. M., U. Y. Anele, A. M. Abdel-Wahed, A. R. Abdou, & I. M. Khattab. 2021. Effects of anise, clove and thyme essential oils supplementation on rumen fermentation, blood metabolites, milk yield and milk composition in lactating goats. Anim. Feed Sci. Technol. 271: 114760. https://doi.org/10.1016/j.anifeedsci.2020.114760

Elghandour, M. M. Y., J. C. Vázquez, A. Z. M. Salem, A. E. Kholif, M. M. Cipriano, L. M. Camacho, & O. Márquez. 2017. In vitro gas and methane production of two mixed rations influenced by three different cultures of Saccharomyces cerevisiae, Journal of Applied Animal Research, 45: 389-395, doi: 10.1080/09712119.2016.1204304

Ellis, J. L., J. Dijkstra, A. Bannink, E, Kebreab S. E. Hook, S, Archibeque, & J. France. 2012. Quantifying the effect of monensin dose on the rumen volatile fatty acid profile in high-grain-fed beef cattle. J. Anim. Sci.90:2717–2726. doi: 10.2527/jas.2011-3966.

European Commission. 2020.Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: A Farm to Fork Strategy for a fair, healthy and environmentally-friendly food system COM/2020/381 final

Fadel, A. M., & A. Abusamra. 2007. Effect of supplemental yeast (Saccharomyces cerevisiae) culture on NDF digestibility and rumen fermentation of forage sorghum hay in Nubian goat’s kids. Journal of Agriculture and Biological Science. 3:133-137

Farha, A.K., Q. Q. Yang, G. Kim, H. B. Li, F. Zhu, H. Y. Liu, R. Y. Gan, & H. Corke. 2020. Tannins as an alternative to antibiotics. Food Bioscience. 38: 100751. https://doi.org/10.1016/j.fbio.2020.100751

Fenta, M. D., A. A. Gebremariam, & A. S. Mebratu. 2023. Effectiveness of probiotic and combinations of probiotic with prebiotics and probiotic with rumenotorics in experimentally induced ruminal acidosis sheep. Vet Med (Auckl). 14:63-78. doi: 10.2147/VMRR.S396979.

Ferraz Jr, M. V. C. & P. H. V. Carvalho, 2022. Use of feed additives to improve feed efficiency and growth of feedlot cattle. Archivos Latinoamericanos de Producción Animal. 30: 27-35. https://doi.org/10.53588/alpa.300503

Fitrihidajati, H., & I. E. Ratnasari. 2017. Effectiveness of ruminant feed formula from the fermented water hyacinth (eichhornia crassipes) to produce the high-level protein of goat meat. Advanced Science Letters. 23: 11972–11975, 2017. doi:10.1166/asl.2017.10555

Fonseca, N. V. B., A. D. S. Cardoso, A. S. R. D. S. Bahia, J. D. Messana, E. F. Vicente, & R. A. Reis. 2023. Additive tannins in ruminant nutrition: an alternative to achieve sustainability in animal production. Sustainability. 15: 4162. https://doi.org/ 10.3390/su15054162

Fuller, R. A. 1989. Review: Probiotics in man and animals. Journal of Application Bacteriology. 66:365-378

Gerlach, K., M. Pries, & K. H. Südekum. 2018. Effect of condensed tannin supplementation on in vivo nutrient digestibilities and energy values of concentrates in sheep. Small Ruminant Research. 161: 57-62. https://doi.org/10.1016/j.smallrumres.2018.01.017

Ghimpețeanu, O. M., E. N. Pogurschi, D. C. Popa, N. Dragomir, T. Drăgotoiu, O. D. Mihai, & C. D. Petcu. 2022. Antibiotic use in livestock and residues in food-a public health threat: A Review. Foods. 11:1430. doi: 10.3390/foods11101430.

Giannenas, I., J. Skoufus., C. Giannakopoulos., M. Wiemann, O. Gortzi., S. Lalas, & I. Kyriazakis. 2011. Effect of essestial oils on milk production, milk composition, and rumen microbiota in Chios dairy ewes. J. Dairy. Sci. 94: 5569-5577. https://doi.org/10.3168/jds.2010-4096

Golder, H. M., S. E. Denman, C. McSweeney, P. Celi & I. J. Lean. 2023. Effects of feed additives on rumen function and bacterial and archaeal communities during a starch and fructose challenge. J. Dairy Sci. 106:8787–8808 https://doi.org/10.3168/jds.2023-23486

González, E., G. Caja, E. Albanell, C. Flores, R. Casals, & X. Such. 2008. Lactational effects of adding a fi brolytic enzyme complex to the concentrate of lactating dairy goats. Journal of Animal and Feed Sciences. 17: 344–351. DOI: https://doi.org/10.22358/jafs/66614/2008

Goodrich, R.D., J. E. Garrett, D. R. Gast, M. A. Kirick, D. A. Larson, & J. C. Meiske, 1984. In£uence of monensin on the performance of cattle. J. Anim. Sci. 58: 1484-1498. https://doi.org/10.2527/jas1984.5861484x

Grainger, C., T. Clarke, M. J. Auldist, K. A. Beauchemin, S. M. McGinn, G. C. Waghorn, & R. J. Eckard. 2009. Potential use of Acacia mearnsii condensed tannins to reduce methane emissions and nitrogen excretion from grazing dairy cows. Can. J. Anim. Sci. 89: 241-251.

Günal, M., B. Pinski, & A. A. AbuGhazaleh. 2017. Evaluating the effects of essential oils on methane production and fermentation under in vitro conditions, Italian Journal of Animal Science. 16: 500-506, doi: 10.1080/1828051X.2017.1291283

Guyomard, H., L. G. Soler, C. Détang-Dessendre, & V. Réquillart. 2023. The European Green Deal improves the sustainability of food systems but has uneven economic impacts on consumers and farmers. Commun Earth Environ. 4: 358. https://doi.org/10.1038/s43247-023-01019-6

Hart, K. J., H. G. Jones K. E. Waddams, H. J. Worgan B. Zweifel & C. J. Newbold. 2019. An essential oil blend decreases methane emissions and increases milk yield in dairy cows. Open J. Anim. Sci. 9:259. doi: 10.4236/ojas.2019.93022.

Henke, A., E. Westreicher-Kristen, J. Molkentin, U. Dickhoefer, K. Knappstein, M. Hasler, & A. Susenbeth. 2017. Effect of dietary quebracho tannin extract on milk fatty acid composition in cows. J. Dairy Sci. 100:6229–6238. doi: 10.3168/jds.2016-12149.

Hernández, R., S. S. González, J. M. Pinos-Rodríguez, M. E. Ortega, A. Hernández, G. Bueno, & M. Cobos. 2009. Effect of a yeast culture on nitrogen balance and digestion in lambs fed early and mature orchard grass. J. Appl. Anim. Res. 35: 53–56. DOI:10.1080/09712119.2009.9706984

Hess, H. D., T. T. Tiemann F. Noto, J. E. Carulla, & M. Kreuzer. 2006. Strategic use of tannins as means to limit methane emission from ruminant livestock. International Congress Series 1293:164 – 167. https://doi.org/10.1016/j.ics.2006.01.010

Hon, D. N. S. 1994. Cellulose: a random walk along its historical path. p. 25

Hong, H. T. & C. P. Wu. 2021. Bacillus spp.-fermented mixture in goat starter diets on growth performance, blood, and carcass and gastrointestinal traits. Revista Brasileira de Zootecnia 50: e20200242. https://doi.org/10.37496/rbz5020200242

Hossam, H., H. H. Azzaz, H. A. Murad, & T. A. Morsy. 2015. Utility of ionophores for ruminant animal. Asian Journal of Animal Science. 9: 254 – 265. doi : 10.3923/ajas.2015.254.265

Hristov, A. N., A. Melgar, D. Wasson,& C. Arndt. 2022. Symposium Review: Effective nutritional strategies to mitigate enteric methane in dairy cattle. J. Dairy Sci. 105: 8543–8557. https://doi.org/10.3168/jds.2021-21398

Hristov, N.A., T. A. McAllister, & K. J. Cheng. 1998. Stability of exogenous polysaccharidedegrading enzymes in the rumen. Animal Feed Science and Technology. 76: 161-168. ttps://doi.org/10.1016/S0377-8401(98)00217-X

Huang, Q., X. Liu, G. Zhao, T. Hu, & Y. Wang. 2018. Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Animal Nutrition. 4: 137-150. https://doi.org/10.1016/j.aninu.2017.09.004

Hvelplund, T., M. R. Weisbjerg, I. K. Hindrichsen, & J. Madseen, 2009. The effect of adding exogenous enzymes at ensiling on nutrient availability in different forages. Proceedings of the TSAP Conference, September, 2009, Mwanza, Tanzania, pp: 1-7.

Hymes-Fecht, U. C. & D. P. Casper. 2021. Adaptation and withdrawal of feeding dried Aspergillus oryzae fermentation product to dairy cattle and goats on in vitro NDF digestibility of selected forage sources. Transl Anim Sci. 5: txab051. doi: 10.1093/tas/txab051.

Jahani-Azizabadi, H., Z. Durmic, J. Vadhanabhuti, & P. E. Vercoe. 2019. Effect of some australian native shrubs essential oils on in vitro rumen microbial fermentation of a high-concentrate diet. J. Anim. Plant Sci. 29:8–15.

Jalilvand, G., N. E. Odongo, S, López, A. Naserian, R. Valizadeh, F. Shahrodi, E. Kebreab, & J. France. 2008. Effects of different levels of an enzyme mixture on in vitro gas production parameters of contrasting forages. Animal Feed Science and Technology.146: 289- 301. DOI:10.1016/j.anifeedsci.2008.01.007

Jayanegara, A., F. Leiber, & M. Kreuzer. 2012. Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. J. Anim. Physiol. Anim. Nutr. 96:365–375. doi: 10.1111/j.1439-0396.2011.01172.x.

Jet, S. M. & N. S. Florencia. 2021. Phytogenic feed additives as an alternative to antibiotic growth promoters in poultry nutrition. Advanced studies in the 21st century. Animal Nutr. 8:1–18. 10.5772/intechopen.99401

Jiren, T. S., I. Dorresteijn, J. Hanspach, J. Schultner, A. Bergsten, A. Manlosa, N. Jager, F. Senbeta, & J. Fischer. 2020. Alternative discourses around the governance of food security: A case study from Ethiopia. Global Food Security. 24: 100338. https://doi.org/10.1016/j.gfs.2019.100338

Kalmus, P., T. Orro, A. Waldmann, R. Lindjärv, & K. Kask. 2009. Effect of yeast culture on milk production and metabolic and reproductive performance of early lactation dairy cows. Acta Vet Scand. 5:32. doi: 10.1186/1751-0147-51-32.

Kawas, J. R., R. Garcia-Castillo, F. Garza-Cazares, H. Fimbres-Durazo, E. O. Saenz, G. H. Vidal, & C. D. Lu. 2007. Effects of sodium bicarbonate and yeasts on productive performance and carcass characteristics of light – weight lambs fed finishing diets. Small Ruminant Research. 67:157- 163. https://doi.org/10.1016/j.smallrumres.2005.09.011

Kebreab, E. 2022. Environmental impact of feed additives in cattle production. No. 55 (2022): 2022 Annual Conference Proceedings. American Association of Bovine Practitioners. Conference Proceedings. DOI: https://doi.org/10.21423/aabppro20228607

Kelln, B. M., G. B. Penner, S. N. Acharya, T. A. McAllister, & H. A. Lardner. 2021. Impact of condensed tannin-containing legumes on ruminal fermentation, nutrition, and performance in ruminants: a review. Can. J. Anim. Sci. 101: 210–223 (2021) dx.doi.org/10.1139/cjas-2020-0096

Kewan, K. Z., M. M. Ali, B. M. Ahmed, S. A. El-Kolty, & U. A. Nayel. 2021. The effect of yeast (Saccharomyces Cerevisae), garlic (Allium Sativum) and their combination as feed additives in finishing diets on the performance, ruminal fermentation, and immune status of lambs. Egyptian J. Nutrition and Feeds. 24: 55-76

Khalifa, S. S, & S. Sh. Khalaf. 2021. Effect of exogenous fibrolytic enzymes on performance of local male goats. Anbar Journal of Agricultural Sciences. 19: 96–105. DOI -Crossref: 10.32649/ajas.2021.176226

Kholif, A. E., G. A. Gouda, T. A. Morsy, O. H. Matloup, M. Fahmy, A. S. Gomaa, & A. K. Patra. 2022. Dietary date palm leaves ensiled with fibrolytic enzymes decreased methane production, and improved feed degradability and fermentation kinetics in a ruminal in vitro system. Waste Biomass Valor 13: 3475–3488. https://doi.org/10.1007/s12649-022-01752-7

Kim, S. A., M. J. Jang, S. Y. Kim, Y. Yang, H. O. Pavlidis, & S. C. Ricke. 2019. Potential for prebiotics as feed additives to limit foodborne campylobacter establishment in the poultry gastrointestinal tract. Frontiers in Microbiology. 10: 431584. https://doi.org/10.3389/fmicb.2019.00091

Kumar, S., S. S. Dagar, A. K. Puniya, & R. C. Upadhyay. 2013. Changes in methane emission, rumen fermentation in response to diet and microbial interactions. Res Vet Sci. 94: 263–8. 10.1016/j.rvsc.2012.09.007

Letlhogonolo, A. S., M. H. Zahra, G. M. Tlou, & M. Monnye. 2020. The current status of the alternative use to antibiotics in poultry production: an african perspective. Antibiotics. 9: 1–18. 10.3390/antibiotics9090594

Liang, Q., M. Yuan, L. Xu, E. Lio, F. Zhang, H. Mou, & F. Secundo. 2022. Application of enzymes as a feed additive in aquaculture. Marine Life Science & Technology 4: 208–221 https://doi.org/10.1007/s42995-022-00128-z

López-Aguirre, D., J. Hernández-Meléndez, R. Rojo, F. Sánchez-Dávila, N. López-Villalobos, A. F. Z. M. Salem, J. C. Martínez-González, J. F. Vázquez-Armijo, & S. Ruíz. 2016. Effects of exogenous enzymes and application method on nutrient intake, digestibility and growth performance of Pelibuey lambs. Springer Plus 5, 1399. https://doi.org/10.1186/s40064-016-3075-7

Loregian, K. E, D. A. B. Pereira, F. Rigon, E. Magnani, M. I. Marcondes, E. A. Baumel, R. H. Branco, P. Del Bianco Benedeti, & E. M. Paula. 2023. Effect of tannin inclusion on the enhancement of rumen undegradable protein of different protein sources. Ruminants. 3:413-424. https://doi.org/10.3390/ruminants3040034

Luebbe, M. K., K. H. Jenkins, S. A. Furman, K. Kreikemeier, 2013. Effects of feeding microbial feed additives on growth performance and carcass traits of steers fed steam-flaked corn-based diets with wet distillers grains plus soluble. Nebraska Beef Cattle Report. 66.

Makkar, H. P. S. 2003. Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Rumin. Res. 49: 241–256. doi: 10.1016/S0921-4488(03)00142-1.

Manuelian, C. L., R. Pitino, M. Simoni, A. Mavrommatis, M. De Marchi, F. Righi, & E. Tsiplakou. 2021. Plant feed additives as natural alternatives to the use of synthetic antioxidant vitamins on livestock mammals’ performances, health, and oxidative status: A Review of the literature in the last 20 years. Antioxidants. 10: 1461. https://doi.org/10.3390/antiox10091461

Mao, H. L., H. Mao, J. K. Wang J. X. Liu, & I. Yoon. 2013. Effects of Saccharomyces cerevisiae fermentation product on in vitro fermentation and microbial communities of low-quality forages and mixed diets. J Anim Sci. 91:3291–3298. DOI: 10.2527/jas.2012-5851

Marques, R. D. S. & R. F. Cooke. 2021. Effects of ionophores on ruminal function of beef cattle. Animals (Basel). 11:2871. doi: 10.3390/ani11102871.

Márquez, A., G. Mendoza, J. M. Pinos-Rodríguez, H. Zavaleta, S. González, S. Buntinx, O. Loera, & M. Meneses. 2009. Effect of fibrolytic enzymes and incubation pH on in vitro degradation of NDF extracts of alfalfa and orchardgrass. Italian Journal of Animal Science. 9:221–230. doi:10.4081/ijas.2009.221

Masyita, A., R. M. Sari, A. D. Astuti, B. Yasir, N. R. Rumata, T. B. Emran, F. Nainu, & J. Simal-Gandara. 2022. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chem X. 13:100217. doi: 10.1016/j.fochx.2022.100217.

McGuffey, R. K., L. F. Richardson, & J. I. D. Wilkinson. 2001. Ionophores for dairy cattle: Current Status and Future Outlook. Dairy Sci. 84 (E. Suppl.): E194-E203 2001. https://doi.org/10.3168/jds.S0022-0302(01)70218-4

Menci, R., M. Coppa, A. Torrent, A. Natalello, B. Valenti, G. Luciano, A. Priolo, & V. Niderkorn. 2021. Effects of two tannin extracts at different doses in interaction with a green or dry forage substrate on in vitro rumen fermentation and biohydrogenation. Animal Feed Science and Technology. 278: 114977. https://doi.org/10.1016/j.anifeedsci.2021.114977

Mendoza, G. D., O. Loera-Corral, F. X. Plata-Pérez, P. A. Hernández- García, & M. Ramírez-Mella. 2014. Considerations on the use of exogenous fibrolytic enzymes to improve forage utilization. Scientific World Journal. 2014:247437. doi: 10.1155/2014/247437.

Miller-Webster, T., W. H. Hoover, M. Holt, & J. E. Nocek. 2002. Influence of yeast culture on ruminal microbial metabolism in continuous culture. J. Dairy Sci., 85 :2009-2014. DOI: 10.3168/jds.S0022-0302(02)74277-X

Mlambo, V. & C. M. Mnisi. 2019. Optimizing ruminant production systems for sustainable intensification, human health, food security and environmental stewardship. Outlook on Agriculture. 48: 85-93. https://doi.org/10.1177/0030727019840758

Moody, M. L., G. I. Zanton, J. M. Daubert, & A. J. Heinrichs. 2007. Nutrient utilization of differing forage-to-concentrate ratios by growing Holstein heifers J. Dairy Sci., 90 : 5580-5586. https://doi.org/10.3168/jds.2007-0570

Mousa, G. A., M. A. Allak, M. G. Shehata, N. M. Hashem, & O. G. A. Hassan. 2022. Dietary supplementation with a combination of fibrolytic enzymes and probiotics improves digestibility, growth performance, blood metabolites, and economics of fattening lambs. Animals (Basel). 12:476. doi: 10.3390/ani12040476.

Muñoz-Cuautle, A., M. E. Ortega-Cerrilla, J. G. Herrera-Haro, C. Nava-Cuellar, C. Gutiérrez-Olvera, J. E. Ramírez-Bribiesca, & P. Zetina-Córdoba. 2022. Effect of Oregano (Lippia graveolens) essential oil as a phytogenic feed additive on productive performance, ruminal fermentation, and antioxidant activity in lamb meat. Agriculture.12: 973. https://doi.org/10.3390/agriculture12070973

Muro, M. G., R. Arias, M. S. Trigo, M. A. Eirin, A. C. Cattáneo, K. Steffen, & C. A. Cordiviola. 2018. Use of ionophores in goat feeding. International Journal of Sciences. 4:51-56. DOI: 10.18483/ijSci.1706

Nascimento, T. V. C., R. L. Oliveira, D. R. Menezes, A. R. F. de Lucena, M. A. Á. Queiroz, A. G.V. O. Lima, R. D. X. Ribeiro, & L. R. Bezerra. 2021. Effects of condensed tannin-amended cassava silage blend diets on feeding behavior, digestibility, nitrogen balance, milk yield and milk composition in dairy goats. Animal. 15:100015. doi: 10.1016/j.animal.2020.100015.

Nehme, R., S. Andrés, R. B. Pereira, M. Ben Jemaa, S. Bouhallab, F. Ceciliani, S. López, F. Z. Rahali, R. Ksouri, D. M. Pereira, & L. Abdennebi-Najar. 2021. Essential Oils in Livestock: From Health to Food Quality. Antioxidants. 10: 330. doi: 10.3390/antiox10020330.

Noack, S., H. D. Chapman, & P. M. Selzer. 2019. Anticoccidial drugs of the livestock industry. Parasitol Res. 118: 2009-2026. doi: 10.1007/s00436-019-06343-5.

Novilla, M. N. 1992. The veterinary importance of the toxic syndrome induced by ionophores. Vet Hum Toxicol. 34:66–70.

Oliveira, S. G. & T. T. Berchielli. 2007. Potentiality of tannins used in forages conservation and ruminant nutrition : A Review. Archives of Veterinary Science. 12:1-9

Omonijo, F. A., L. Ni, J. Gong, Q. Wang, L. Lahaye, & C. Yang. 2018. Essential oils as alternatives to antibiotics in swine production. Anim. Nutr. 4: 126–136. doi: 10.1016/j.aninu.2017.09.001.

Orlandi, T., C. A. Pozo, M. P. Mezzomo, & G. V. Kozloski. 2020. Acacia mearnsii tannin extract as a feed additive: impact on feed intake, digestibility and nitrogen excretion by sheep fed a tropical grass-based diet. Ciência Rural, Santa Maria, 50: e20200095. https://doi.org/10.1590/0103-8478cr20200095

Pariza, M. W. & M. Cook. 2010. Determining the safety of enzymes used in animal feed. Regulatory Toxicology and Pharmacology, 56: 332-342. DOI: 10.1016/j.yrtph.2009.10.005

Pasqualino, L. F., G. B. Oliveira, A. A. Miszura, J. P. R. Barroso, A. C. Limede, L. A. Sardinha, J. S. Biava, E. M. Ferreira, A. Vaz Pires, & D. M. Polizel. 2021. Residual effect of narasin on ruminal fermentation characteristics in lambs. Livestock Science. 240: 104141. https://doi.org/10.1016/j.livsci.2020.104141

Patra, A. K. 2012. The use of live yeast products as microbial feed additives in ruminant nutrition. Asian J. Anim. Vet. Adv. 7: 366-375. DOI:10.3923/ajava.2012.366.375

Phakachoed, N., W. Suksombat, D. Colombatto, & K. A. Beauchemin, 2013. Use of fibrolytic enzymes additives to enhance in vitro ruminal fermentation of corn silage. Livestock Science. 157: 100-112. https://doi.org/10.1016/j.livsci.2013.06.020

Placha, I., F. Gai, & M. P. Simomova. 2022. Editorial: Natural feed additives in animal nutrition—Their potential as functional feed. Front. Vet. Sci. 9: 1062724. doi: 10.3389/fvets.2022.1062724

Polizel, D. M., A. S. Martins, A. A. Miszura, M. V. de Castro Ferraz Júnior, A. V. Bertoloni, G. B. Oliveira, J. P. R. Barroso, E. M. Ferreira, & A. Vaz Pires. 2021. Low doses of monensin for lambs fed diets containing high level of ground flint corn. Sci. Agric. 78: e20190263. doi: http://dx.doi.org/10.1590/1678-992X-2019-0263

Purwar, V., P. S. Oberoi, & A. K. Dang. 2017. Effect of feed supplement and additives on stress mitigation in Karan Fries heifers. Vet World. 10:1407-1412. doi: 10.14202/vetworld.2017.1407-1412.

Ramanzin, M., L. Bailoni, S. Schiavon, & G. Bittante. 1997. Effect of monensin on milk production and efficiency of dairy cows fed two diets differing in forage to concentrate ratios. Journal of Dairy Science. 80:1136-1142. https://doi.org/10.3168/jds.S0022-0302(97)76040-5

Ramdani, D., E. Yuniarti, A. Jayanegara, & A. S. Chaudhry. 2023. Roles of essential oils, polyphenols, and saponins of medicinal plants as natural additives and anthelmintics in ruminant diets: A Systematic Review. Animals. 13:767. https://doi.org/10.3390/ani13040767

Ratika, K. & J. R. K. Singh. 2018. Plant derived essential oil in ruminant nutrition - A Review. Int. J. Curr. Microbiol. App. Sci. 7: 1747-1753.

DOI: https://doi.org/10.20546/ijcmas.2018.705.203

Reddish, M. A. & L. Kung Jr. 2007. The effect of feeding a dry enzyme mixture with fibrolytic activity on the performance of lactating cows and digestibility of a diet for sheep. J. Dairy Sci 90: 4724-4729. https://doi.org/10.3168/jds.2007-0269

Ribeiro, B. S., M. D. F. Ferreira, J. L. Moreira, & L. Santos. 2021. simultaneous distillation–extraction of essential oils from Rosmarinus officinalis L. Cosmetics. 8:117. https://doi.org/10.3390/cosmetics8040117

Russell, J. B. & H. J. Strobel. 1989. Effect of ionophores on ruminal fermentation. Appl Environ Microbiol. 55:1-6. doi: 10.1128/aem.55.1.1-6.1989.

Russell, J. B. & A. J. Houlihan. 2003. Ionophore resistance of ruminal bacteria and its potential impact on human health. FEMS Microbiology Reviews 27:65-74. DOI: 10.1016/S0168-6445(03)00019-6

Saadoun, J. H., A. Ricci, M. Cirlini, E. Bancalari, V. Bernini, G. Galaverna, E. Neviani, & C. Lazzi. 2021. Production and recovery of volatile compounds from fermented fruit by-products with Lacticaseibacillus rhamnosus. Food and Bioproducts Processing. 128: 215–226. https://doi.org/10.1016/j.fbp.2021.06.002

Saha, S. K. & N. N. Pathak. 2021. Use of Feed Additives on Livestock Production. In book: Saha, S. K. & N.N. Pathak (eds). Fundamentals of Animal Nutrition. DOI:10.1007/978-981-15-9125-9_13

Salami, S. A., A. Guinguina, J. O. Agboola, A. A. Omede, E. M. Agbonlahor, & U. Tayyab. 2016. Review: In vivo and postmortem effects of feed antioxidants in livestock: A Review of the implications on authorization of antioxidant feed additives. Animal. 10: 1375–1390. doi:10.1017/S1751731115002967

Salem, A. Z. M., M. El-Adawy, H. Gado, L. M. Camacho, M. González-Ronquillo, H. Alsersy, & B. Borhami. 2011. Effects of exogenous enzymes on nutrients digestibility and growth performance in sheep and goats. Tropical and Subtropical Agroecosystems. 14: 867-874

Sales, V. D. S., Á. B. Monteiro, G. A. Delmondes, E. P. do Nascimento, F. R. Sobreira Dantas Nóbrega de Figuêiredo, C. K. de Souza Rodrigues, J. F. Evangelista de Lacerda, C. N. Fernandes, M. O. Barbosa, A. X. Brasil, S. R. Tintino, M. C. Vega Gomez, C. Coronel, H. D. Melo Coutinho, J. G. Martins da Costa, C. F. Bezerra Felipe, I. R. Alencar de Menezes, & M. R. Kerntopf. 2018. Antiparasitic activity and essential oil chemical analysis of the Piper Tuberculatum Jacq Fruit. Iran J Pharm Res. 17:268-275.

Santos Magaço, F. D., C. E. Silva Freitas, A. A. de Moura Freitas, V. S. Martins Juniror, A. F. F. Dos Santos, M. L. A. Pereira, & E. R. Duarte. 2020. Productive performance and economic profitable of weaned lambs supplemented with a Trichoderma longibrachiatum strain isolated from sheep. Int J Anim Sci 4: 6.

Schären, M., C. Drong, K. Kiri, S. Riede, M. Gardener, U. Meyer, J. Hummel, T. Urich, G. Breves, & S. Dänicke. 2017. Differential effects of monensin and a blend of essential oils on rumen microbiota composition of transition dairy cows. J. Dairy Sci. 100:2765–2783. doi: 10.3168/jds.2016-11994.

Schebesta, H. & J. J. L. Candel. 2020. Game-changing potential of the EU’s Farm to Fork Strategy. Nat Food 1: 586–588.https://doi.org/10.1038/s43016-020-00166-9

Simon, O., A. Jadamus, & W. Vahjen. 2001. Probiotic feed additives-effectiveness and expected modes of action. Journal of Animal and Feed Sciences, 10 (Suppl. 1): 51-67. https://doi.org/10.22358/jafs/70012/2001

Starsmore, K., N. Lopez-Villalobos, L. Shalloo, M. Egan, J. Burke, & B. Lahart. 2023. Animal factors that affect enteric methane production measured using the greenfeed monitoring system in grazing dairy cows. Journal of Dairy Science. Available online 16 November 2023. https://doi.org/10.3168/jds.2023-23915

Storm, I. M., A. L. Hellwing, N. I. Nielsen, & J. Madsen. 2012. Methods for measuring and estimating methane emission from ruminants. Animals (Basel). 2:160-83. doi: 10.3390/ani2020160.

Sujani, S. & R. T. Seresinhe, 2015. Exogenous enzymes in ruminant nutrition: A Review. Asian Journal of Animal Sciences. 9: 85-99.

doi: 10.3923/ajas.2015.85.99

Sun, K., H. Liu, H. Fan, T. Liu, & C. Zheng. 2021a. Research progress on the application of feed additives in ruminal methane emission reduction: a review. PeerJ. 9: e11151. doi: 10.7717/peerj.11151.

Sun, Y., M. E. Duarte, & S. W. Kim. 2021b. Dietary Inclusion of multispecies probiotics to reduce the severity of post-weaning diarrhea caused by Escherichia Coli F18+ in Pigs. Anim. Nutr. 7: 326–333. DOI: 10.1016/j.aninu.2020.08.012

Sutton, J. D., R. H. Phipps, D. E. Beever, D. J. Humphries, G. F. Hartnell, J. L. Vicini, & D. L. Hard. 2003. Effect of method of application of a fibrolytic enzyme product on digestive processes and milk production in Holstein-Friesian cows. J. Dairy Sci. 86: 546-556. DOI: 10.3168/jds.S0022-0302(03)73633-9

Taye, D. & M. Etefa. 2020. Review on improving nutritive value of forage by applying exogenous enzymes. International Journal of Veterinary Sciences and Animal Husbandry.5: 72-79

Tedeschi, L. O., A. L. Abdalla, C. Álvarez, S. W. Anuga, J. Arango, K. A. Beauchemin, P. Becquet, A. Berndt, R. Burns, C. De Camillis, J. Chará, J. M. Echazarreta, M. Hassouna, D. Kenny, M. Mathot, R. M. Mauricio, S. C. McClelland, M. Niu, A. A. Onyango, R. Parajuli, L. G. R. Pereira, A. del Prado, M. P. Tieri, A. Uwizeye, & E. Kebreab. 2022. Quantification of methane emitted by ruminants: a review of methods, Journal of Animal Science. 100: skac197, https://doi.org/10.1093/jas/skac197

Tekeli, A., G. Yıldız, W. Drochner, & H. Steingass. 2017. Effects of essence oil additives added to different feeds on methane production. Revista MVZ Córdoba. 22: 5854-5866. doi:10.21897/RMVZ.1023

Titi, H. H. 2003. Replacing soybean meal with sunflower meal with or without fibrolytic enzymes in fattening diets of goat kids. Small Rumin Res. 48:45–50. doi: 10.1016/S0921-4488(03)00003-8.

Tong, Z., W. He, X. Fan, & A. Guo. 2022. Biological function of plant tannin and its application in animal health. Front Vet Sci. 8:803657. doi: 10.3389/fvets.2021.803657.

Torres, R. N. S., J. R. Paschoaloto, G. A. de Almeida Júnior, J. M. B. Ezequiel, L. de Melo Coelho, O. R. M. Neto, & M. T. C. Almeida. 2022. Meta-analysis to evaluate the effect of yeast as a feed additive on beef cattle performance and carcass traits. Livestock Science. 260: 104934. https://doi.org/10.1016/j.livsci.2022.104934

Torres, N., G. D. Mendoza, J. R. Bárcena, S. S. González, O. Loera, A. Z. M. Salem, & A. Lara. 2013. Effect of a fibrolytic enzymatic extract from cellulomonas flavigena on in vitro degradation and in vivo digestibility and productive performance of lambs. Animal Nutrition and Feed Technology. 13: 583-592

Tseten, T., R. A. Sanjorjo, M. Kwon, & S. W. Kim. 2022. Strategies to mitigate enteric methane emissions from ruminant animals. J. Microbiol. Biotechnol. 32: 269–277. doi: 10.4014/jmb.2202.02019

Vazquez, A. P. 2016. Are superior probiotic feed-additives for poultry. J Bacteriol Mycol Open Access. 2:57‒59. doi: 10.15406/jbmoa.2016.02.00023

Velázquez-De Lucio, B. S., E. M. Hernández-Domínguez, M. Villa-García, G. Díaz-Godínez, V. Mandujano-Gonzalez, B. Mendoza-Mendoza, & J. Álvarez-Cervantes. 2021. Exogenous enzymes as zootechnical additives in animal feed: A Review. Catalysts. 11:851. https://doi.org/10.3390/catal11070851

Vincent, U., F. Serano, M. J. de la Huebra, & C. von Holst 2012. Determination of semduramicin in poultry feed additive, premixture and compound feed by liquid chromatography and UV spectrophotometric detection after post-column derivatisation. J Pharm Biomed Anal. 61:150-155. doi: 10.1016/j.jpba.2011.11.017.

Vohra, A., P. Syal, & A. Madan. 2016. Probiotic yeasts in livestock sector. Anim. Feed Sci. Technol. 219: 31-47. https://doi.org/10.1016/j.anifeedsci.2016.05.019

Waghorn, G., W. Jones, I. Shelton, & W. McNabb. 1990. Condensed tannins and the nutritive value of herbage. Proceedings of the New Zealand Grassland Association 51: 171-176. DOI: https://doi.org/10.33584/jnzg.1990.51.1894

Wells, C. W. 2023. Effects of essential oils on economically important characteristics of ruminant species: A comprehensive review. Anim Nutr. 16:1-10. doi: 10.1016/j.aninu.2023.05.017.

Wells, C. W. 2024. Effects of essential oils on economically important characteristics of ruminant species: A comprehensive review. Animal Nutrition. 16: 1-10. https://doi.org/10.1016/j.aninu.2023.05.017

WHO, 2015. Biodiversity and Health. https://www.who.int › Newsroom › Fact sheets › Detai

Wohlt, J. E., A. D. Finkelstein, & C. H. Chung. 1991. Yeast culture to improve intake, nutrient digestibility, and perfomance by cattle during early lactation. J Dairy Sci. 74: 1395. doi: 10.3168/jds.S0022-0302(91)78294-5.

Wu, J., Y. Bai, X. Lang, C. Wang, X. Shi, D. P. Casper, L. Zhang, H. Liu, T. Liu, X. Gong, T. Liang, & R. Zhang. 2020. Dietary supplementation with oregano essential oil and monensin in combination is antagonistic to growth performance of yearling Holstein bulls. J. Dairy Sci. 103:8119–8129 https://doi.org/10.3168/jds.2020-18211

Yang, W. Z., K. A. Beauchemin, & L. M. Rode. 2000. A comparison of methods of adding fibrolytic enzymes to lactating cow diets. J Dairy Sci 83:2512–2520. DOI: 10.3168/jds.S0022-0302(00)75143-5

Yang, W. Z., K. A. Beauchemin, & L. M. Rode. 1999. Effects of an enzyme feed additive on extent of digestion and milk production of lactating dairy cows. Journal of Dairy Science 82: 391-403. https://doi.org/10.3168/jds.S0022-0302(99)75245-8

Yang, W. Z., K. A. Beauchemin, D. D. Vedres, G. R. Ghorbani, D. Colombatto, & D. P. Morgavi. 2004. Effects of direct-fed microbial supplementation on ruminal acidosis, digestibility, and bacterial protein synthesis in continuous culture. Anim Feed Sci Technol. 114:179–193. https://doi.org/10.1016/j.anifeedsci.2003.12.010

Yang, S. & K. Carlson. 2004. Routine monitoring of antibiotics in water and wastewater with a radioimmunoassay technique. Water Res. 38: 3155-3166. doi: 10.1016/j.watres.2004.04.028.

Yang, W. Z. & M. L. He. 2016. Effects of feeding garlic and juniper berry essential oils on milk fatty acid composition of dairy cows. Nutrition and Metabolic Insights. 9. doi:10.4137/NMI.S33395

Yanza, Y. R., A. Fitri., B. Suwignyo., Elfahmi., N. Hidayatik., N. R. Kumalasari., A. Irawan, & A. Jayanegara. 2021. The utilisation of tannin extract as a dietary additive in ruminant nutrition: A Meta-Analysis. Animals (Basel). 11:3317. doi: 10.3390/ani11113317.

Zeng, Z., S. Zhang, H. Wang, & X. Piao. 2015. Essential oil and aromatic plants as feed additives in non-ruminant nutrition: a review. J. Animal Sci Biotechnol 6: 1-10. https://doi.org/10.1186/s40104-015-0004-5.




DOI: http://dx.doi.org/10.24014/jupet.v22i1.30061

Refbacks

  • There are currently no refbacks.


Jurnal Peternakan has been accredited by Sinta 3 : Number 158/E/KPT/2021

Starting from Vol. 18 No. 1 Year 2021 to Vol. 22 No. 2 Year 2025

 

Jurnal Peternakan Indexed By:

         
 

Editorial Office:

Jurnal Peternakan

Faculty of Agriculture and Animal Science, State Islamic University of Sultan Syarif Kasim Riau.

H.R. Soebrantas street KM. 15,5 Panam – Pekanbaru city.

E-mail: jurnal.peternakan@uin-suska.ac.id

ejournal: http://ejournal.uin-suska.ac.id/index.php/peternakan

e-ISSN: 2355-9470   p-ISSN: 1829-8729

Lisensi Creative Commons
Creation is distributed under the Creative Commons Attribution 4.0 International License. View Mystats