Exploration of Field Independent Students’ Mathematical Problem-Solving Ability in Ordinary Differential Equations Learning
Abstract
This study aims to analyze and describe students' mathematical problem-solving abilities in an ordinary differential equations course, using cognitive styles as a framework. This study is qualitative and uses a case study approach. The subjects were students of the Mathematics Education study program at the Faculty of Teacher Training and Education, Riau Islamic University. The selection of research subjects for in-depth interviews was conducted using purposive sampling. The instruments used were mathematical problem-solving ability tests, GEFT tests, and interview sheets that had met the eligibility criteria. The data analysis techniques used were data reduction, data presentation, and conclusion drawing. The results showed that field independent subjects had a strong foundation in solving ordinary differential equations problems, especially in the initial analysis and application of procedures. However, weaknesses remained in evaluating data adequacy and in strategic reflection. Hence, the subjects were not fully able to adjust the length and depth of the solution to the demands of the problem.
Full Text:
PDFReferences
Arfinanti, N. (2020). Bahan Ajar Persamaan Diferensial berbasis Higher order Thinking Skills. Jurnal Analisa, 6(1), 10–18. https://doi.org/10.15575/ja.v6i1.7782
Ariawan, R., & Zetriuslita. (2021). Kemampuan Berpikir Kritis Matematis Mahasiswa ditinjau dari Gaya Kognitif (Studi Kasus pada Mata Kuliah Persamaan Differensial). Jurnal Cendekia : Jurnal Pendidikan Matematika, 5(2), 1410–1426. https://doi.org/10.31004/cendekia.v5i2.652
Astuti, R., & Wardono. (2022). Mathematical Literacy in Terms of Cognitive Style with Pendidikan Matematika Realistik Indonesia Learning Assisted by Google Classroom. Unnes Journal of Mathematics Education, 11(3), 264–271. https://doi.org/10.15294/ujme.v11i3.58492
Barana, A., Boetti, G., & Marchisio, M. (2022). Self-Assessment in the Development of Mathematical Problem-Solving Skills. Education Sciences, 12(2), 1–27. https://doi.org/10.3390/educsci12020081
Choi, M., Flam-Shepherd, D., Kyaw, T. H., & Aspuru-Guzik, A. (2022). Learning Quantum Dynamics with Latent Neural Ordinary Differential Equations. Physical Review A, 105(4), 042403.
Cipta, E. S., & Dahlan, J. A. (2021). Analisis Pembelajaran Persamaan Diferensial Berdasarkan Artikel-artikel Penelitian. Jurnal Analisa, 7(2), 164–173. https://doi.org/10.15575/ja.v7i2.10824
Dorimana, A., Uworwabayeho, A., & Nizeyimana, G. (2022). Enhancing Upper Secondary Learners’ Problem-solving Abilities using Problem-based Learning in Mathematics. International Journal of Learning, Teaching and Educational Research, 21(8), 235–252. https://doi.org/10.26803/ijlter.21.8.14
Evendi, E., Al Kusaeri, A. K., Pardi, M. H. H., Sucipto, L., Bayani, F., & Prayogi, S. (2022). Assessing Students’ Critical Thinking Skills Viewed From Cognitive Style: A Study on the Implementation of the Problem-Based E-Learning Model in Mathematics Courses. Eurasia Journal of Mathematics, Science and Technology Education, 18(7), em2129. https://doi.org/10.29333/ejmste/12161
Faradillah, A. (2018). Analysis of Mathematical Reasoning Ability of Pre-Service Mathematics Teachers in Solving Algebra Problem Based on Reflective and Impulsive Cognitive Style. Formatif: Jurnal Ilmiah Pendidikan MIPA, 8(2), 119–128. https://doi.org/10.30998/formatif.v8i2.2333
Fitriani, Herman, T., & Fatimah, S. (2023). Considering the Mathematical Resilience in Analyzing Students’ Problem-Solving Ability through Learning Model Experimentation. International Journal of Instruction, 16(1), 219–240. https://doi.org/10.29333/iji.2023.16113a
Giancola, M., D’Amico, S., & Palmiero, M. (2023). Working Memory and Divergent Thinking: The Moderating Role of Field-Dependent-Independent Cognitive Style in Adolescence. Behavioral Sciences, 13(5), 397. https://doi.org/10.3390/bs13050397
Hafidzah, N. A., Azis, Z., & Irvan. (2021). The Effect of Open Ended Approach on Problem Solving Ability and Learning Independence in Students’ Mathematics Lessons. IJEMS:Indonesian Journal of Education and Mathematical Science, 2(1), 11–18. https://doi.org/10.30596/ijems.v2i1.6176
Haswati, D., & Nopitasari, D. (2019). Implementasi Bahan Ajar Persamaan Diferensial dengan Metode Guided Discovery Berbantuan Software Mathematica untuk Meningkatkan Pemahaman Konsep. Jurnal Gantang, 4(2), 97–102. https://doi.org/10.31629/jg.v4i2.1358
Hendriana, H., Rohaeti, E. E., & Sumarmo, U. (2023). Hard Skills dan Soft Skills Matematik Siswa. Bandung: Refika Aditama.
Hooda, M., & Devi, R. (2018). Significance of Cognitive Style for Academic Achievement in Mathematics. Scholarly Research Journal for Humanity Science & English Language, 4(22), 5521–5527. Retrieved from www.srjis.com
Hyland, D., van Kampen, P., & Nolan, B. (2023). Student Perceptions of a Guided Inquiry Approach to a Service-Taught Ordinary Differential Equations Course. International Journal of Mathematical Education in Science and Technology, 54(2), 250–276. https://doi.org/10.1080/0020739X.2021.1953627
Isnawati, A. R., & Oktaviani, D. R. (2022). Pengembangan Buku Ajar Kalkulus Berorientasi pada Unity of Sciences (UoS). AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 11(1), 23–37. https://doi.org/10.24127/ajpm.v11i1.4461
Johnson, P., Almuna, F., & Silva, M. (2022). The Role of Problem Context Familiarity in Modelling First-Order Ordinary Differential Equations. Journal on Mathematics Education, 13(2), 323–336. https://doi.org/10.22342/jme.v13i2.pp323-336
Jonsson, B., Granberg, C., & Lithner, J. (2020). Gaining Mathematical Understanding: The Effects of Creative Mathematical Reasoning and Cognitive Proficiency. Frontiers in Psychology, 11, 574366. https://doi.org/10.3389/fpsyg.2020.574366
Kartono, Muttaqi, U. K., & Dwidayati, N. K. (2020). An Analysis of Students’ Error Types in Solving Mathematics Problems in the Implementation of the Osborn Simple Feedback Learning Model. Journal of Physics: Conference Series, 1567(3), 032018. https://doi.org/10.1088/1742-6596/1567/3/032018
Kusumaningsih, W., Saputra, H. A., & Aini, A. N. (2019). Cognitive Style and Gender Differences in Mathematics Students’ Conceptual Understanding. Journal of Physics: Conference Series, 1280(4), 042017. https://doi.org/10.1088/1742-6596/1280/4/042017
Makamure, C., & Jojo, Z. M. (2022). An Analysis of Errors Made by Pre-Service Teachers in First-Order Ordinary Differential Equations. Eurasia Journal of Mathematics, Science and Technology Education, 18(6), em2117. https://doi.org/10.29333/ejmste/12074
Maliya, N., Isnarto, & Sukestiyarno. (2019). Analysis of Mathematical Problem Solving Ability Based on Self confidence in Creative Problem Solving Learning and Independent Learning Assisted Module. Unnes Journal of Mathematics Education Research, 8(1), 118–124.
Marchy, F., Murni, A., Kartini, & Muhammad, I. (2022). The Effectiveness of Using Problem-Based Learning (PBL) in Mathematics Problem-Solving Ability for Junior High School Students. AlphaMath : Journal of Mathematics Education, 8(2), 185–198. https://doi.org/10.30595/alphamath.v8i2.15047
Marliani, N. (2015). Kemampuan Pemecahan Masalah Matematis dari Pembelajaran Konflik Kognitif yang Terintegrasi dengan Soft Skill. Jurnal Formatif, 5(2), 134–144. https://doi.org/10.30998/formatif.v5i2.333
Mayasari, N. (2017). Beban Kognitif dalm Pembelajaran Persamaan Differensial dengan Koefisien Linier di IKIP PGRI Bojonegoro Tahun Ajaran 2016/2017. Jurnal Silogisme: Kajian IlmuMatematika Dan Pembelajarannya, 2(1), 1–7. https://doi.org/10.24269/js.v2i1.507
Mulbar, U., Rahman, A., & Ahmar, A. S. (2017). An Analysis of Mathematical Problem-Solving Ability Based on SOLO Taxonomy and Cognitive Style. World Transactions on Engineering and Technology Education, 15(1), 68–73. https://doi.org/10.26858/wtetev15i1y2017p6873
Murtafiah, W. (2017). Profil Kemampuan Berpikir Kreatif Mahasiswa dalam Mengajukan Masalah Persamaan Diferensial. JIPM (Jurnal Ilmiah Pendidikan Matematika), 5(2), 73. https://doi.org/10.25273/jipm.v5i2.1170
Ningsih, Y. L., & Jayanti. (2016). Hasil Belajar Mahasiswa melalui Penerapan Model Blended Learning pada Mata Kuliah Persamaan Diferensial Parsial. Jurnal Pendidikan Matematika RAFA, 2(1), 1–11. Retrieved from http://jurnal.radenfatah.ac.id/index.php/jpmrafa/article/view/1237
Ningsih, Y. L., & Rohana. (2018). Pemahaman Mahasiswa terhadap Persamaan Diferensial Biasa Berdasarkan Teori Apos. Jurnal Penelitian Dan Pembelajaran Matematika, 11(1), 168–176. https://doi.org/10.30870/jppm.v11i1.2995
Nufus, H., & Ariawan, R. (2019). Relationship between Cognitive Style and Habits of Mind. Malikussaleh Journal of Mathematics Learning (MJML), 2(1), 23–28. https://doi.org/10.29103/mjml.v2i1.756
Pjanić, K., Jurić, J., & Mišurac, I. (2025). The Use of Different Strategies and Their Impact on Success in Mental Calculation. Education Sciences, 15(9), 1098. https://doi.org/10.3390/educsci15091098
Purnomo, E. A., Sukestiyarno, Y. L., Junaedi, I., & Agoestanto, A. (2022a). Analisis Kemampuan Pemecahan Masalah Calon Guru Ditinjau dari Metakognitif pada Materi Kalkulus Diferensial. Prosiding Seminar Nasional Pascasarjana, 310–315. Semarang: Universitas Negeri Semarang. Retrieved from http://pps.unnes.ac.id/pps2/prodi/prosiding-pascasarjana-unnes
Purnomo, E. A., Sukestiyarno, Y. L., Junaedi, I., & Agoestanto, A. (2022b). Analysis of Problem Solving Process on HOTS Test for Integral Calculus. Mathematics Teaching-Research Journal, 14(1), 199–214.
Purnomo, E. A., Sukestiyarno, Y. L., Junaedi, I., & Agoestanto, A. (2022c). The Analysis of Problem Solving Ability Viewed from Intuition in Integral Calculus Course. International Conference on Science, Education, and Technology, 246–251. Semarang: Universitas Negeri Semarang. Retrieved from https://proceeding.unnes.ac.id/index.php/iset
Ramlah, J. (2014). Relationship between Students’ Cognitive Style (Field-Dependent and Field-Independent Cognitive Styles) with their Mathematic Achievement in Primary School. International Journal of Humanities Social Sciences and Education (IJHSSE), 1(10), 88–93. Retrieved from www.arcjournals.org
Rejeki, S., Riyadi, & Siswanto. (2021). Analysis of Students’ Problem-Solving Ability in Solving Geometry Problems. Journal of Physics: Conference Series, 1918(4), 042075. https://doi.org/10.1088/1742-6596/1918/4/042075
Son, A. L., Darhim, & Fatimah, S. (2020). Students’ Mathematical Problem-Solving Ability Based on Teaching Model Interventions and Cognitive Style. Journal on Mathematics Education, 11(2), 209–222. https://doi.org/10.22342/jme.11.2.10744.209-222
Sudarsono, Kartono, Mulyono, & Mariani, S. (2022). The Effect of STEM Model Based on Bima’s Local Cultural on Problem Solving Ability. International Journal of Instruction, 15(2), 83–96. https://doi.org/10.29333/iji.2022.1525a
Sugiyono. (2020). Metode Penelitian & Pengembangan. Bandung: Alfabeta.
Sukestiyarno, Y. L. (2021). Metode Penelitian Pendidikan. Semarang: Alem Print.
Sukmadinata, N. S. (2017). Metode Penelitian Pendidikan. Bandung: Remaja Rosdakarya.
Sulistyorini, Y. (2017). Analisis Kesalahan dan Scaffolding dalam Penyelesaian Persamaan Diferensial. Kalamatika: Jurnal Pendidikan Matematika, 2(1), 91–104. https://doi.org/10.22236/kalamatika.vol2no1.2017pp91-104
Surya, E., & Syahputra, E. (2017). Improving High-Level Thinking Skills by Development of Learning PBL Approach on the Learning Mathematics for Senior High School Students. International Education Studies, 10(8), 12–20. https://doi.org/10.5539/ies.v10n8p12
Sutama, Anif, S., Prayitno, H. J., Narimo, S., Fuadi, D., Sari, D. P., & Adnan, M. (2021). Metacognition of Junior High School Students in Mathematics Problem Solving Based on Cognitive Style. Asian Journal of University Education, 17(1), 134–144. https://doi.org/10.24191/ajue.v17i1.12604
Torres-Peña, R. C., Peña-González, D., Lara-Orozco, J. L., Ariza, E. A., & Vergara, D. (2025). Enhancing Numerical Thinking Through Problem Solving: A Teaching Experience for Third-Grade Mathematics. Education Sciences, 15(6), 1–27. https://doi.org/10.3390/educsci15060667
Ulya, H., Kartono, & Retnoningsih, A. (2014). Analysis of Mathematics Problem Solving Ability of Junior High School Students Viewed from Students’ Cognitive Style. International Conference on Mathematics, Science, and Education, 2014(Icmse), 1–7. Semarang: Faculty of mathematics and Natural Sciences. Retrieved from http://www.ijern.com/journal/2014/October2014/45.pdf
Ulya, Himmatul. (2015). Hubungan Gaya Kognitif Dengan Kemampuan Pemecahan Masalah Matematika Siswa. Jurnal Konseling Gusjigang, 1(2), 1. https://doi.org/10.24176/jkg.v1i2.410
Witkin, H. A., Moore, C. A., Goodenough, D. R., & Cox, P. W. (1977). Field-Dependent and Field-Independent Cognitive Styles and Their Educational Implications. Review of Educational Research, 47(1), 1–64. https://doi.org/10.3102/00346543047001001
Yatim, S. S. K. M., Saleh, S., Zulnaidi, H., & Yatim, S. A. M. (2022). Effects of Integrating a Brain-Based Teaching Approach with GeoGebra on Problem-Solving Abilities. International Journal of Evaluation and Research in Education, 11(4), 2078–2086. https://doi.org/10.11591/ijere.v11i4.22873
Zaenuri, Medyasari, L. T., & Dewi, N. R. (2021). Auditory, Intellectual, and Repetition Learning with an Ethnomathematics Nuance in Improving Students’ Mathematical Problem-Solving Ability. Journal of Physics: Conference Series, 1918(4), 042093. https://doi.org/10.1088/1742-6596/1918/4/042093
Zetriuslita, & Ariawan, R. (2021). Curiosity Matematis Mahasiswa dalam Pembelajaran Daring Ditinjau Berdasarkan Level Kemampuan Akademik dan Gender. Jurnal Cendekia: Jurnal Pendidikan Matematika, 5(3), 3253–3264. https://doi.org/10.31004/cendekia.v5i3.1027
DOI: http://dx.doi.org/10.24014/juring.v8i4.38732
Refbacks
- There are currently no refbacks.
Juring (Journal for Research in Mathematics Learning)
Universitas Islam Negeri Sultan Syarif Kasim Riau
Indexed by:









