Membentuk Sketsa Grafik Mahasiswa Tadris Matematika: Menggunakan Instrument Penalaran Kovariasonal Thompson

Fikri Apriyono, Sunardi Sunardi, Susanto Susanto, Abi Suwito

Abstract


Tujuan penelitian ini adalah untuk mengetahui gambaran level membentuk sketsa grafik/ Shape of Sketched Graph (SSG) mahasiswa tadris matematika atau calon guru matematika dengan menggunakan instrumen penalaran kovariasional yang dikembangkan oleh Thompson. Jenis penelitian yang dilakukan yaitu penemilian deksriptif kualitatif yang mendeskripsikan setiap level SSG supaya mendapatkan gambaran yang jelas. Subjek dalam penelitian ini berjumlah 132 mahasiswa prodi tadris matematika UIN Kiai Haji Achmad Siddiq Jember dari angkatan semester 1, semester 3, dan semester 4 tahun akademik 2023/2024. Pengumpulan data dilakukan dengan menggunakan tes instrumen  dan  yang dikembangkan oleh Thompson. Teknik analisis yang digunakan adalah teknik analisis data kuantitatif dan deskriptif kualitatif. Data kuantitatif untuk mengetahui gambaran sebaran level pada masing-masing kelas. Hasil penelitian ini menunjukkan bahwa level terendah atau level B0 memiliki prosentase terbesar juga yaitu sebesar 14% untuk semester 1, 28% untuk semester 3, dan 38% untuk semester 5. Sedangkan untuk empat level tertinggi masih rendah yaitu level B3b, B3a, B4b, dan B4a. Keempat level tersebut masing-masing masih kurang dari 5% hal ini menunjukkan bahwa kemampuan berpikir bentuk grafik masih lemah ketika menghubungkan besaran-besaran pada sumbu  dan sumbu . Mahasiswa dengan level B0 dan B1 belum memahami makna penalaran kovariasional yang melibatkan dua besaran antara sumbu u dan sumbu v. Pada level B2 meraka memiliki kemampuan penalaran tetapi belum maksimal. Sedangkan untuk level B3b, B3a, dan B4b, mereka membuat grafik mendekati sempurna atau sudah memiliki penalaran kovariasional. Pada level tertinggi B4a hanya terdapat 2 mahasisa atau calon guru yang memeiliki penalaran kovariasional sempurna.

Full Text:

PDF

References


Ali, S., Lulseged, S., & Medhin, G. (2018). EMJ series on statistics and methods part IV: Presenting and summarizing data using graphical tools. Ethiopian Medical Journal, 56(4), 389–396. https://doi.org/https://emjema.org/index.php/EMJ/article/view/1141

Banu, D. F., Kousalya, P. T., Varsha, K., Prashanth, C. K.,

Madhumohan, P., & Meivel, S. (2024). Research analysis of data exploration and visualization dashboard using data science. In Multidisciplinary Applications of AI Robotics and Autonomous Systems (pp. 206–217). https://doi.org/10.4018/979-8-3693-5767-5.ch014

Carlson, M., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational reasoning while modeling dynamic events: A framework and a study. Journal for Research in Mathematics Education, 33(5), 352–378. https://doi.org/10.2307/4149958

Carlson, M. P. (1995). A cross-sectional investigation of the development of the function concept. University of Kansas.

Confrey, J., & Smith, E. (1994). Exponential functions, rates of change, and the multiplicative unit. Educational Studies in Mathematics, 26, 135–164.

El Morr, C., Jammal, M., Ali-Hassan, H., & El-Hallak, W. (2022). Data Visualization. In International Series in Operations Research and Management Science (Vol. 334, pp. 165–193). https://doi.org/10.1007/978-3-031-16990-8_5

Gantt, A. L., Paoletti, T., & Corven, J. (2023). Exploring the prevalence of Covariational reasoning across Mathematics and Science using TIMSS 2011 Assessment items. International Journal of Science and Mathematics Education, 21(8), 2349–2373.

Gupta, A., Khodwal, A., & Pal, N. (2022). VacoPie: Visualizing Variance and Covariance Information onto Categorical Distribution of Data. ACM International Conference Proceeding Series, 324–325. https://doi.org/10.1145/3493700.3493763

Habre, S. (2017). Students’ challenges with polar functions: covariational reasoning and plotting in the polar coordinate system. International Journal of Mathematical Education in Science and Technology, 48(1), 48–66. https://doi.org/10.1080/0020739X.2016.1220027

Harini, N. V. (2019). Capturing students’ covariational reasoning levels while solving integrals problem. Journal of Physics: Conference Series, 1157(4). https://doi.org/10.1088/1742-6596/1157/4/042048

Islam, M., & Jin, S. (2019). An Overview of Data Visualization. Nternational Conference on Information Science and Communications Technologies (ICISCT), 1–7. https://doi.org/doi: 10.1109/ICISCT47635.2019.9012031.

Johnson, H. L., McClintock, E. D., & Gardner, A. (2020). Opportunities for Reasoning: Digital Task Design to Promote Students’ Conceptions of Graphs as Representing Relationships between Quantities. Digital Experiences in Mathematics Education, 6(3), 340–366. https://doi.org/10.1007/s40751-020-00061-9

Kertil, M. (2020). Covariational reasoning of prospective mathematics teachers: How do dynamic animations affect? Turkish Journal of Computer and Mathematics Education (TURCOMAT), 11(2), 312–342. https://doi.org/DOI: 10.16949/turkbilmat.652481

Kertil, M., Erbas, A. K., & Cetinkaya, B. (2019). Developing prospective teachers’ covariational reasoning through a model development sequence. Mathematical Thinking and Learning, 21(3), 207–233. https://doi.org/10.1080/10986065.2019.1576001

Kiernan, N. A., Manches, A., & Seery, M. K. (2024). Resources for reasoning of chemistry concepts: multimodal molecular geometry†. Chemistry Education Research and Practice. https://doi.org/10.1039/d3rp00186e

Lyman, R. L. (2015). Graphing Evolutionary Patternin Stone Tools to Reveal Evolutionary Process. In N. Goodale & W. Andrefsky, Jr (Eds.), Lithic Technological Systems and Evolutionary Theory. Cambridge: Cambridge University Press.

Moore, K. C., Liang, B., Stevens, I. E., Tasova, H. I., Paoletti, T., & Ying, Y. (2020). A quantitative reasoning framing of concept construction. Proceedings of the Annual Conference on Research in Undergraduate Mathematics Education.

Moore, K. C., Paoletti, T., & Musgrave, S. (2013). Covariational reasoning and invariance among coordinate systems. The Journal of Mathematical Behavior, 32(3), 461–473. https://doi.org/https://doi.org/10.1016/j.jmathb.2013.05.002

Ng, K. H., & Peh, W. C. G. (2009). Preparing effective illustrations. Part 1: Graphs. Singapore Medical Journal, 50(3), 245–249.

Palha, S., Bouwer, A., Bredeweg, B., & Keulen, S. (2020). Self-construction and interactive simulations to support the learning of drawing graphs and reasoning in mathematics. Intelligent Tutoring Systems: 16th International Conference, ITS 2020, Athens, Greece, June 8–12, 2020, Proceedings 16, 364–370. Springer.

Paoletti, T. (2020). Reasoning about relationships between quantities to reorganize inverse function meanings: The case of Arya. Journal of Mathematical Behavior, 57. https://doi.org/10.1016/j.jmathb.2019.100741

Paoletti, T., Gantt, A. L., & Corven, J. (2023). A Local Instruction Theory for Emergent Graphical Shape Thinking: A Middle School Case Study. Journal for Research in Mathematics Education, 54(3), 202–224. https://doi.org/10.5951/jresematheduc-2021-0066

Paoletti, T., Gantt, A. L., & Vishnubhotla, M. (2022). Constructing a system of covariational relationships: two contrasting cases. Educational Studies in Mathematics, 110(3), 413–433.

Saldanha, L. A., & Thompson, P. W. (1998). Re-thinking Covariation from a Quantitative Perspective: Simultaneous Continuous Variation. In Proceedings of the Annual Meeting of the Psychology of Mathematics Education - North America (Vol. 1).

Taylor, H. A., Burte, H., & Renshaw, K. T. (2023). Connecting spatial thinking to STEM learning through visualizations. Nature Reviews Psychology, 2(10), 637–653. https://doi.org/10.1038/s44159-023-00224-6

Thompson, P. W. (1994). Images of rate and operational understanding of the fundamental theorem of calculus. Educational Studies in Mathematics, 26(2), 229–274.

Thompson, P. W., Hatfield, N. J., Yoon, H., Joshua, S., & Byerley, C. (2017). Covariational reasoning among US and South Korean secondary mathematics teachers. The Journal of Mathematical Behavior, 48, 95–111.




DOI: http://dx.doi.org/10.24014/juring.v7i3.27941

Refbacks

  • There are currently no refbacks.


Juring (Journal for Research in Mathematics Learning)

Universitas Islam Negeri Sultan Syarif Kasim Riau

 

Indexed by:

     

 

View My Stats

 

Flag Counter