Pengaruh Kombinasi Substrat dan Lama Waktu Inkubasi Berbeda Fermentasi Menggunakan Aspergillus ficuum terhadap Aktivitas Enzim dan Perubahan Kandungan Nutrisi

W. A. Angga, Y. Rizal, M. E. Mahata, A. Yuniza, R. Mayerni


Physical processing such as immersion at different water temperatures did not improve crude fibre and crude protein content of wasted-tea leaves. Thus, the utilization of these wasted tea leaves for poultry diet is still limited due to the high in crude fibre content. Therefore, it is necessary to find out a method for solving this problem. One of the methods is a fermentation by using Aspergillus ficuum. This fungi is known as a microbe which produces cellulase for reducing fibre content. The objectives to investigate the appropriate rice bran (RB) and wasted tea leaf (WTL) combinations and incubation times when fermented with Aspergillus ficuum, and to study the effects of this fermentation process on enzymes (cellulase and protease) activity, and alteration of dry matter, crude fibre and crude protein contents. This experiment was performed in a completely randomized design in a 4 x 2 factorial arrangement of treatments with 4 replicates. The first factor was RB and WTL combination as follows: 100:0% (A1), 90:10% (A2), 80:20% (A3), 70:30% (A4). The second factor was incubation times as follows: 7 days (B1) and 9 days (B2). These combinations of RB and WTL were fermented by using Aspergillus ficuum at the dose of 6.3 x 1012 CFU/mL. Measured variables were cellulase and protease activities, and alteration percentage in dry matter (DM), crude fibre (CF) and crude protein (CP). There was an interaction between RB:WTL combination and incubation time in cellulase activity (P<0.01) and CF content (P<0.01). Increasing WTL up to 10% in RB: WTL combination significantly augmented (P<0.05) cellulase activity at 9 days incubation time. The reduction percentage in CF occurred at 90:10% RB and TLM combination and 9 days incubation time. The incubation time for 9 days decreased the protease activity (P<0.01) as well as the reduction percentage in DM (P<0.05). The 90:10% RB and WTL combination improved the increasing percentage in CP (P<0.01). In conclusion, the appropriate RB and WTL combination and incubation time for fermenting the combination ratio of RB:WTL by using Aspergillus ficuum was 90:10% at 9 days incubation time.


Aspergillus ficuum, enzyme activity, fermentation, nutrient alteration, rice bran, tea leaves.


Affandi, E. & H. Yuniati. 2011. Uses of the waste of palm residue as substrate for syinthesizing some nutrients through Rhizopus oligosporus fermentation. PGM. 34(2) : 123–130.

Angga, W. A., Y. Rizal, M. E. Mahata, A. Yuniza, & R. Mayerni. 2018. Potential of waste tea leaves (Camellia sinensis) in West Sumatra to be processed into poultry feed. Pakistan Journal of Nutrition. 17(6) : 287-293. https://doi. org/10.3923/pjn.2018.287.293.

Anita, W. Y., Suharto, & I. Astuti. 2012. Pengaruh pemberian tepung daun teh tua dalam ransum terhadap performan dan persentase lemak abdominal ayam broiler. Tropical Animal Husbandry. 1(1) : 1–6.

AOAC. 1884. Official Methods of Analysis. Association of Official Analytical Chemists. Washington DC.

Astuti, T., M. N. Rofiq, & N. Nurhaita. 2017. Evaluasi kandungan bahan kering, bahan organik dan protein kasar pelepah sawit fermentasi dengan penambahan sumber karbohidrat. Jurnal Peternakan. 14(2) : 42. https://doi. org/10.24014/jupet.v14i2.4247.

Bekalu, Z. E., C. K. Madsen, G. Dionisio, & H. Brinch-Pedersen. 2017. Aspergillus ficuum phytase activity is inhibited by cereal grain components. PLoS ONE. 12(5) : 1-13. https://

Bentubo, H. D. L. & O. F. Gompertz. 2014. Effects of temperature and incubation time on the in vitro expression of proteases, phospholipases, lipases and DNases by different species of Trichosporon. SpringerPlus. 3(1) : 1-10.

Bergmeyer, H. U., J. Bergmeyer, & M. Grab. 1981. Methods of Enzymatic Analysis 2 (2nd ed., Vol. 2). B978-0-12-091302-2.X5001-4.

Daun, K., N. A. M. Eskin, & D. Hickling. 2015. Canola: Chemistry, Production, Processing, and Utilization (J. K. Daun, D. Hickling, & M. Eskin, eds.). United States of America: AOCS.

Ekinci, M. S., J. C. Martin, & H. J. Flint. 2002. Expression of a cellulase gene, celA, from the rumen fungus Neocallimastix patriciarum in Streptococcus bovis by means of promoter fusions. Biotechnology Letters. 24(9) : 735–741. A:1015250504093.

Fiberty, E. 2002. Pengaruh Beberapa Tingkat Penggunaan Ampas Teh dalam Ransum Bentuk Pelet terhadap Performan Kelinci Persilangan Lepas Sapih. Pdf. Institut Pertanian Bogor. Bogor.

Gilna, V. V. & K. M. Khaleel. 2011. Cellulase enzyme activity of Aspergillus fumigatus from mangrove soil on lignocellulosic substrate. Recent Research in Science and Technology. 3(1) : 132–134.

Gushairiyanto. 2004. Fermentasi Kulit Umbi Ketela Pohon oleh Aspergillus niger serta Implikasinya Terhadap Kambing Kacang Jantan. Universitas Padjadjaran. Bandung.

Henriette, C., S. Zibeni, & M. E. A. Petitdemange. 1993. Protease and lipase production by a strain of Setaria marcessen. Journal of Industrial Microbiology. 12 : 129-135.

Indra, P., R. Isworo, & Wijanarka. 2015. Produksi enzim protease Aspergillus Flavus Pam-25 dengan variasi pH dan waktu inkubasi. Jurnal Biologi. 4(2) : 10–16.

Izydorczyk, M. S., A. Canada, S. W. Cui, A. Canada, Q. Wang, & A. Canada. 2005. Polysaccharide Gums: Structures, Functional Properties, and Applications. In Food Carbohydrates: Chemistry, Physical Properties and Aplications, FL: Taylor & Francis, PP. 263-307.

Khasnabis, J., C. Rai, & A. Roy. 2015. Determination of tannin content by titrimetric method from different types of tea. Journal of Chemical and Pharmaceutical Research. 7(6) : 238-241.

Krisnan, R. 2005. Pengaruh pemberian ampas teh (Camellia sinensis) fermentasi dengan Aspergillus niger pada ayam broiler. JITV. 10(1) : 1-5.

Kusuma, A. P., S. Chuzaemi, & Mashudi. 2019. The effect lenght of fermentation of pineapple fruit waste (Ananas comosus L . Merr ) on the physical quality and nutrient content using Aspergillus niger. Jurnal Nutrisi Ternak Tropis. 2(1) : 1-9.

Lu, F., M. Lu, Z. Lu, X. Bie, H. Zhao, & Y. Wang. 2008. Purification and characterization of xylanase from Aspergillus ficuum AF-98. Bioresource Technology. 99(13) : 5938-5941. https://doi. org/10.1016/j.biortech.2007.10.051.

Madigan, M., J. M. Martinko, D. Stahl, & D. P. Clark. 2012. Biology of Microorganism (13th Ed). Prentice-Hall Internastional Inc. Wisconsin.

Maulana, Z., Mirnawati, & C. Gita. 2019. Pengaruh Dosis Inokulum Aspergillus ficuum dan Lama Fermentasi Terhadap Aktivitas Selulase, Serat Kasar dan Daya Cerna Serat Kasar Ampas Susu Kedelai Fermentasi. Universitas Andalas. Padang.

Mrudula, S., & R. Murugammal. 2011. Production of cellulase by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate. Brazilian Journal of Microbiology. 42(3) : 1119-1127. S1517-83822011000300033

Mulyani, S. 2016. Effect of Fermentation time to the protein levels of fermented lamtoro gung (Leucaena leucocephala) fruit seed. Akad. Kim. 5 : 50–54.

Nair, V. C. & Z. Duvnjak. 1990. Reduction of phytic acid content in canola meal by Aspergillus ficuum in solid state fermentation process. Appied Microbiology and Biotechnology. 34 : 183-188. 384677-8.00009-6.

Noferdiman, Y. Rizal, Mirzah, Y. Heryandi, & Y. Marlinda. 2008. Penggunaan urea sebagai sumber nitrogen pada proses biodegradasi substrat lumpur sawit oleh jamur Phanerochaete chrysosporium. Jurnal Ilmiah Ilmu-Ilmu Peternakan. 11(4) : 75–82.

Oboh, G. & M. K. Oladunmoye. 2007. Biochemical changes in micro-fungi fermented cassava flour produced from low- and medium- cyanide variety of cassava tubers. Nutrition and Health. 18(4) : 355-367. https://doi. org/10.1177/026010600701800405.

Paul, J. K. 1980. Large and Small Scale Ethyl Alcohol Manufacturing Processes From Agricultural Raw Materials. In Chemical Technology Review (1st Ed.). https://doi. org/10.1016/0361-3658(81)90031-x.

Purkan, H., H. Purnama, & S. Sumarsih. 2015. Produksi enzim selulase dari Aspergillus niger menggunakan sekam padi dan ampas tebu sebagai induser. Jurnal Ilmu Dasar. 16(2) : 95- 102.

Putri, R. M., R. Isworo, & P. Sri. 2015. Produksi enzim protease dari A. niger PAM18A dengan variasi pH dan waktu inkubasi. Jurnal Biologi. 4(2) : 25-34.

Ramkumar, S., P. Sureshkumar, A. K. A. Mandal, K. Rajaram, & P. Mohankumar. 2011. Identification of superior varieties of tea (Camellia sinensis (L.) o. kuntze ) in the selected UPASI germplasm using biomarkers. International Journal of the Physical Sciences. 6(5) : 727–743. JMPR11.1243.

Rizal, Y., Mirnawati, Y. Marlida, & I. P. Kompiang. 2010. The role of humic acid in palm kernel cake fermented by Aspergillus niger for poultry ration. Pakistan Journal of Nutrition, 9(2) : 182-185. pjn.2010.182.185.

Septiana, E. & P. Simanjuntak. 2017. Pengaruh kondisi kultur yang berbeda terhadap aktivitas antioksidan metabolit sekunder kapang Endofit asal akar kunyit. Traditional Medicine Journal. 22(April) : 31–36.

Souza, P. N. da C., N. D. C. Maia, L. H. S. Guimarães, M. L. V. de Resende, & P. G. Cardoso. 2015. Optimization of culture conditions for tannase production by Aspergillus sp. gm4 in solid state fermentation. Acta Scientiarum. Biological Sciences, 37(1) : 23. actascibiolsci.v37i1.22731.

Steel, R. G. D., & J. H. Torrie. 1990. Principles and procedure of statistics: A biometrical approach. In Computers & Geosciences. https://

Styawati, N. E., Mutharudin, & Liman. 2014. Pengaruh lama fermentasi Trametes sp. terhadap kadar bahan kering, kadar abu, dan kadar serat kasar daun nenas varietas Smooth Cayene. Jurnal Ilmiah Peternakan Terpadu. 2(1) : 19-24.

Sudaryati, Y. & D. Sastraatmadja. 1993. Seleksi strain Aspergillus spp. untuk menghasilkan enzim selulase dalam media dedak. Jurnal Mikrobiologi Indonesia. 3 : 30-32.

Sugiwati, S., M. T. Suhartono, M. Hanafi, & H. N. Lioe. 2018. Produksi β-glukosidase Aspergillus niger BIO 2173 dengan Fermentasi padat menggunakan substrat dedak. Jurnal Selulosa, 8(1) : 33. v1i01.221.

Tampoebolon, B. I. M. 2009. Kajian perbedaan aras dan lama pemeraman fermentasi ampas sagu dengan Asperigillus niger terhadap kandungan protein kasar dan serat kasar. Seminar Nasional Kebangkitan Peternakan. 235–243.

Tillman, A. D., H. Hartadi, S. Reksohadiprodjo, S. Prawirokusumo, & S. Lebdosoekojo. 1998. Ilmu Makanan Ternak Dasar. Gadjah Mada University Press. Yogyakarta.

Wahyuni, S. 2003. Fermentasi dedak padi oleh kapang Aspergillus ficuum dan pengaruhnya terhadap kadar fitat, kualitas protein kasar serta energi metabolis pada ayam. Jurnal Bionatura. 5(2) : 141–149.

Widjaja, A. 2008. Pengurangan Kadar Lignin Ramah Lingkungan pada Industri Pulp dan Kertas oleh Enzim Xilanase dari Aspergillus niger. Digilib.Its.Ac.Id: 1-10.

Zumael, Z. 2009. The Nutrient Enrichment of Biological Processing. Agricmed, Warsaw.



  • There are currently no refbacks.

Jurnal Peternakan has been accredited by Sinta 3 : Number 10/E/KPT/2019

Starting from Vol. 14 No. 1 Year 2017 to Vol. 18 No. 2 of 2021


Jurnal Peternakan Indexed By:


Editorial Office:

Jurnal Peternakan

Faculty of Agriculture and Animal Science, State Islamic University of Sultan Syarif Kasim Riau.

H.R. Soebrantas street KM. 15,5 Panam – Pekanbaru city.



e-ISSN: 2355-9470   p-ISSN: 1829-8729

Lisensi Creative Commons
Creation is distributed under the Creative Commons Attribution 4.0 International License. View Mystats