E-CDCCText Development: An Instructional Material for Facilitating Conceptual Change in Fluid Concepts
Abstract
Effective instruction of fluid concepts in physics requires a deep understanding of students' preconceptions and the implementation of pedagogical strategies that promote conceptual change. This study aims to develop the Electronic Conceptual Development and Conceptual Change Text (E-CDCCText), a digital instructional resource designed to foster conceptual change in students’ understanding of fluid mechanics. Employing the Design and Development Research (DDR) methodology, the development followed the ADDIE model. Validation by five expert reviewers, supported by analysis using Facet software, confirmed the material’s quality in terms of content accuracy, structural coherence, narrative clarity, and media design. The E-CDCCText comprises seven structured sections that guide students through a systematic process of constructing and reconstructing scientific concepts, integrating both conceptual development and conceptual change frameworks. The content targets three core fluid concepts: hydrostatic pressure, buoyant force, and the principles underlying floating, suspending, and sinking. The implementation phase involved 64 tenth-grade students, whose conceptual understanding was assessed using a validated four-tier diagnostic test. Results demonstrated a significant enhancement in students’ scientific conceptions, indicating the efficacy of the E-CDCCText in reducing misconceptions. In conclusion, the E-CDCCText is a validated and effective digital instructional tool for supporting conceptual change and improving students’ understanding of fluid concepts in physics education.
Keywords: conceptual change, E-CDCCText, fluid concept, instructional material
Full Text:
PDFReferences
Amin, T. G., Jeppsson, F., & Haglund, J. (2018). Conceptual metaphor and embodied cognition in science learning. Routledge.
Anam, R. S., Widodo, A., Sopandi, W., & Wu, H. K. (2019). Developing a five-tier diagnostic test to identify students’ misconceptions in science: an example of the heat transfer concepts. Elementary Education Online, 18(3), 1014–1029. https://doi.org/10.17051/ilkonline.2019.609690
Armagan, F. Ö., Keskin, M. Ö., & Akin, B. S. (2017). Effectiveness of Conceptual Change Texts: A Meta Analysis. European Journal of Science and Mathematics Education, 5(3), 343–354.
Arthurs, L. A., & Kowalski, C. M. (2022). Engaging students’ prior knowledge during instruction improves their learning of groundwater and aquifers. Journal of Geoscience Education, 70(1), 114–129.
Assem, H. D., Nartey, L., Appiah, E., & Aidoo, J. K. (2023). A review of students’ academic performance in physics: attitude, instructional methods, misconceptions and teachers qualification. European Journal of Education and Pedagogy, 4(1), 84–92.
Attakumah, D. (2020). Textbooks use and academic achievement of senior high school students in core subjects. European Journal of Education Studies.
Aydin, S. (2012). Remediation of misconceptions about geometric optics using conceptual change texts. Journal of Education Research and Behavioral Sciences, 1(1), 1–12.
Bigozzi, L., Tarchi, C., Fiorentini, C., Falsini, P., & Stefanelli, F. (2018). The influence of teaching approach on students’ conceptual learning in physics. Frontiers in Psychology, 9, 2474.
Bitzenbauer, P., & Meyn, J.-P. (2021). Fostering experimental competences of prospective physics teachers. Physics Education, 56(4), 45020.
Bouchée, T., de Putter-Smits, L., Thurlings, M., & Pepin, B. (2022). Towards a better understanding of conceptual difficulties in introductory quantum physics courses. Studies in Science Education, 58(2), 183–202.
Chen, C., Sonnert, G., Sadler, P. M., & Sunbury, S. (2020). The impact of high school life science teachers’ subject matter knowledge and knowledge of student misconceptions on students’ learning. CBE—Life Sciences Education, 19(1), ar9.
Chen, Y., & Techawitthayachinda, R. (2021). Developing deep learning in science classrooms: Tactics to manage epistemic uncertainty during whole‐class discussion. Journal of Research in Science Teaching, 58(8), 1083–1116.
Chew, S. L., & Cerbin, W. J. (2021). The cognitive challenges of effective teaching. The Journal of Economic Education, 52(1), 17–40.
Conrad, D., & Libarkin, J. C. (2022). Using conceptual metaphor theory within the model of educational reconstruction to identify students’ alternative conceptions and improve instruction: A plate tectonics example. Journal of Geoscience Education, 70(2), 262–277.
Ferrero, M., Hardwicke, T. E., Konstantinidis, E., & Vadillo, M. A. (2020). The effectiveness of refutation texts to correct misconceptions among educators. Journal of Experimental Psychology: Applied, 26(3), 411.
Fratiwi, N. J., Kaniawati, I., Suhendi, E., Suyana, I., & Samsudin, A. (2017). The transformation of two-tier test into four-tier test on Newton’s laws concepts. AIP Conference Proceedings, 1848(May). https://doi.org/10.1063/1.4983967
Fujii, T. (2020). Misconceptions and alternative conceptions in mathematics education. Encyclopedia of Mathematics Education, 625–627.
Girwidz, R., & Kohnle, A. (2022). Multimedia and digital media in physics instruction. In Physics education (pp. 297–336). Springer.
Graham, T., Berry, J., & Rowlands, S. (2013). Are ‘misconceptions’ or alternative frameworks of force and motion spontaneous or formed prior to instruction? International Journal of Mathematical Education in Science and Technology, 44(1), 84–103.
Hamid, R., Widodo, A., & Sopandi, W. (2017). Students’ Conceptual Change in Electricity. December 2018. https://doi.org/10.2991/icmsed-16.2017.11
Handayani, D. Y., Suhandi, A., & Djuanda, E. A. (2022). The development of computer supported conceptual change text on buoyant force. Jurnal Multidisiplin Madani, 2(10), 3640–3644.
Hermita, N., Kurniaman, O., Noviana, E., Malik, A., Rochman, C., & Suhandi, A. (2019). Investigating concept progression of prospective primary school teachers in indonesia. Int. J. Sci. Technol. Res, 8(12), 1368–1371.
Hermita, N., Suhandi, A., Syaodih, E., & Samsudin, A. (2017). Level Conceptual Change Mahasiswa Calon Guru Sd Terkait Konsep Benda Netral Sebagai Efek Implementasi Vmmscctext. WaPFi (Wahana Pendidikan Fisika), 2(2), 71. https://doi.org/10.17509/wapfi.v2i2.8270
Jonassen, D. H., & Carr, C. S. (2020). Mindtools: Affording multiple knowledge representations for learning. In Computers as cognitive tools (pp. 165–196). Routledge.
Julie, L. J. H., & Maat, S. M. (2021). The utilisation of textbook in teaching and learning Mathematics among primary school Mathematics teachers. International Journal of Academic Research in Progressive Education and Development, 10(2), 907–921.
Kowalski, P., & Taylor, A. K. (2017). Reducing students’ misconceptions with refutational teaching: For long-term retention, comprehension matters. Scholarship of Teaching and Learning in Psychology, 3(2), 90.
McLure, F., Won, M., & Treagust, D. F. (2020). A sustained multidimensional conceptual change intervention in grade 9 and 10 science classes. International Journal of Science Education, 0(0), 1–19. https://doi.org/10.1080/09500693.2020.1725174
Mishra, L. (2020). Conception and misconception in teaching arithmetic at primary level. Journal of Critical Reviews, 7(5), 936–939.
Nurdini, N., Ramalis, T. R., & Samsudin, A. (2019a). Exploring K-11 Students’ Conception using a Four-Tier Diagnostic Test on Static Fluid: A Case Study. RSU International Research Conference, 672–681. https://doi.org/10.14458/RSU.res.2019.83
Nurdini, N., Ramalis, T. R., & Samsudin, A. (2019b). Exploring K-11 Students ’ Conception using a Four-Tier Diagnostic Test on Static Fluid : a Case Study. April, 672–681.
Nurdini, N., Sari, I. M., & Suyana, I. (2018). The effectiveness of physics e-book that contains balance of scientific literacy aspects in increasing scientific literacy skills: A case study to 32 students in one of public senior high school in Bandung. International Conference on Mathematics and Science Education of Universitas Pendidikan Indonesia, 3, 276–280.
Nurdini, N., Suhandi, A., Ramalis, T., Samsudin, A., Fratiwi, N. J., & Costu, B. (2020). Developing Multitier Instrument of Fluids Concepts (MIFO) to Measure Student’s Conception: A Rasch Analysis Approach. Journal of Advanced Research in Dynamical and Control Systems, 12(6).
Nurwianti, H., Denny, Y. R., & Darman, D. R. (2019). Penerapan Model Pembelajaran Interactive Lecture Demontration (ILD) Menggunakan Simulasi Terhadap Conceptual Change (CC) pada Materi Momentum dan Impuls. Journal of Natural Science and Integration, 2(2), 42. https://doi.org/10.24014/jnsi.v2i2.7976
Ozkan, G., & Umdu Topsakal, U. (2021). Investigating the effectiveness of STEAM education on students’ conceptual understanding of force and energy topics. Research in Science & Technological Education, 39(4), 441–460.
Pacaci, C., Ustun, U., & Ozdemir, O. F. (2024). Effectiveness of conceptual change strategies in science education: A meta‐analysis. Journal of Research in Science Teaching, 61(6), 1263–1325.
Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2). https://doi.org/10.1002/sce.3730660207
Potvin, P., Nenciovici, L., Malenfant-Robichaud, G., Thibault, F., Sy, O., Mahhou, M. A., Bernard, A., Allaire-Duquette, G., Blanchette Sarrasin, J., Brault Foisy, L. M., Brouillette, N., St-Aubin, A. A., Charland, P., Masson, S., Riopel, M., Tsai, C. C., Bélanger, M., & Chastenay, P. (2020). Models of conceptual change in science learning: establishing an exhaustive inventory based on support given by articles published in major journals. Studies in Science Education, 00(00), 1–55. https://doi.org/10.1080/03057267.2020.1744796
Prinz, A., Kollmer, J., Flick, L., Renkl, A., & Eitel, A. (2022). Refuting student teachers’ misconceptions about multimedia learning. Instructional Science, 50(1). https://doi.org/10.1007/s11251-021-09568-z
Qian, Y., & Lehman, J. (2017). Students’ misconceptions and other difficulties in introductory programming: A literature review. ACM Transactions on Computing Education (TOCE), 18(1), 1–24.
Richey, R. C., & Klein, J. D. (2014). Design and development research. Handbook of Research on Educational Communications and Technology, 141–150.
Samsudin, A., Aminudin, A. H., Novia, H., Suhandi, A., Fratiwi, N. J., Yusup, M., Supriyatman, S., Masrifah, M., Adimayuda, R., Prahani, B. K., Wibowo, F. C., Faizin, M. N., & Costu, B. (2023). Identifying Javanese Students’ Conceptions on Fluid Pressure with Wright Map Analysis of Rasch. Journal of Natural Science and Integration, 6(2), 173. https://doi.org/10.24014/jnsi.v6i2.21822
Samsudin, A., Suhandi, A., Rusdiana, D., Kaniawati, I., Fratiwi, N. J., Zulfikar, A., Muhaemin, M. H., Hermita, N., Mansur, Wibowo, F. C., Supriyatman, Malik, A., & Costu, B. (2019). Optimizing Students’ Conceptual Understanding on Electricity and Magnetism through Cognitive Conflict-Based Multimode Teaching (CC-BMT). Journal of Physics: Conference Series, 1204(1). https://doi.org/10.1088/1742-6596/1204/1/012027
Schroeder, N. L., & Kucera, A. C. (2022). Refutation Text Facilitates Learning: a Meta-Analysis of Between-Subjects Experiments. Educational Psychology Review, 34(2). https://doi.org/10.1007/s10648-021-09656-z
Spatioti, A. G., Kazanidis, I., & Pange, J. (2022). A comparative study of the ADDIE instructional design model in distance education. Information, 13(9), 402.
Stefanou, M., Stylos, G., Georgopoulos, K., & Kotsis, K. T. (2024). Primary Preservice Teachers’ Misconceptions and Reasoning of Thermal Concepts in Everyday Contexts. International Journal of Learning in Higher Education, 31(1).
Strike, K. A. (1992). A revisionist theory of conceptual change. Philosophy of Science, Cognitive Psychology, and Educational Theory in Practice/State University of New York Press.
Stylos, G., Sargioti, A., Mavridis, D., & Kotsis, K. T. (2021). Validation of the thermal concept evaluation test for Greek university students’ misconceptions of thermal concepts. International Journal of Science Education, 43(2), 247–273.
Sudirman, S., Andriani, R., & Widya, W. (2023). Description Students’ Misconceptions about the Concept of Motion in Sambas: Post Covid-19. Journal of Natural Science and Integration, 6(2), 229. https://doi.org/10.24014/jnsi.v6i2.19250
Suhandi, A., Samsudin, A., Suhendi, E., Hermita, N., Syamsiah, E. N., & Costu, B. (2020). Facilitating conceptual changes of high school students regarding concepts in static electricity and DC circuits through the use of VMSCDCCText. Universal Journal of Educational Research, 8(3), 815–822.
Sutopo, S. (2016). Students’ Understanding of Fundamental Concepts of Mechanical Wave. Jurnal Pendidikan Fisika Indonesia, 12(1), 41–53. https://doi.org/10.15294/jpfi.v12i1.3804
Syafaren, A., & Gafur, I. A. (2023). Analysis of The Utilization of Audio-Visual Media as A Basic Study of Control System Integration for Science Learning. 6(2), 257–269. https://doi.org/10.24014/jnsi.v6i2.22712
Taylor, P. (2022). An exploration of what determines teacher pedagogy in the context of conceptual change in science.
Thomas, C. L., & Kirby, L. A. J. (2020). Situational interest helps correct misconceptions: An investigation of conceptual change in university students. Instructional Science, 48, 223–241.
Tugtekin, U., & Odabasi, H. F. (2022). Do Interactive Learning Environments Have an Effect on Learning Outcomes, Cognitive Load and Metacognitive Judgments? Education and Information Technologies, 27(5), 7019–7058. https://doi.org/10.1007/s10639-022-10912-0
Vale, I., & Barbosa, A. (2023). Active learning strategies for an effective mathematics teaching and learning.
Wibowo, F. C., Suhandi, A., Nahadi, Samsudin, A., Darman, D. R., Suherli, Z., Hasani, A., Leksono, S. M., Hendrayana, A., Suherman, Hidayat, S., Hamdani, D., & Coştu, B. (2017). Virtual Microscopic Simulation (VMS) to promote students’ conceptual change: A case study of heat transfer. Asia-Pacific Forum on Science Learning and Teaching, 18(2), 1–33.
Wulandari, D., Rangkuti, M. A., Tanjung, Y. I., Ramadhani, I., & Elvianasti, M. (2024). The Conceptual Knowledge Test to Measure The Physics Concepts Mastery of Biology Students on Waves Topic. Jurnal Pendidikan Fisika Indonesia, 20(1), 38–51.
Yürük, N., & Eroğlu, P. (2016). The effect of conceptual change texts enriched with metaconceptual processes on pre-service science teachers’ conceptual understanding of heat and temperature. Journal of Baltic Science Education, 15(6). https://doi.org/10.33225/jbse/16.15.693
Ziad, W. K., Nor’Azam, M. F. A. M., Kaco, H., Idris, F. M., Zulkefly, N. R., Mohd, S. M., & Jan, N. H. M. (2021). An evaluation of Student’s perception towards learning physics at lower secondary school. Jurnal Pendidikan Sains Dan Matematik Malaysia, 11, 94–106.
DOI: http://dx.doi.org/10.24014/jnsi.v8i1.32928
Refbacks
- There are currently no refbacks.