SISTEM IDENTIFIKASI TANDA TANGAN DENGAN PENDEKATAN SUPPORT VECTOR MACHINE
Abstract
Signature is one of the biometric humans that used widely. This system aims to recognize the signature through feature extraction and image classification method signature with Support Vector Machine (SVM). Research databases used 15 samples signatures images from students of Informatics Engineering UNIB with size 300 x 300 pixels. The system is built in the Java programming language with NetBeans IDE 8.0. The system is divided into 3 stages: preprocessing, feature extraction, and SVM classification. Preprocessing stages are binerization, noise Removal, thinning, cropping, and resizing. Feature extraction stage using Image Centroid Zone (ICZ) and Zone Centroid Zone (ZCZ) methods. Furthermore, the results of feature vectors ICZ and ZCZ be input training SVM classification. This research results shows that: (1) the greater the size of the zone, the higher the identification accuracy; (2) the smaller polynomial degree, the higher the signatures identification accuracy; (3) The best performance is obtained for 5x4 size zone and 2 degree polynomial with 97.33% signature identification accuracy.
Keywords
Full Text:
PDFReferences
Iman, Budi Nur. 2005. Uji Kinerja LVQ Neural Network dengan Pembangkitan Variabel Random Uniform untuk Vektor Training pada Pengenalan Tanda Tangan. Retrieved Mei 3, 2014, from http://ies.eepis-its.edu/prosiding/download.php?id=74
Lubis, Chairisni dan Yuliana Soegianto. 2010. Pengenalan Tanda Tangan Dengan Menggunakan Neural Network Dan Pemrosesan Awal Thinning Zhang Suen. Retrieved Mei 12, 2014, from http://fti.tarumanagara.ac.id/jurnal/index.php/lep/article/download/121/74
Damayanti, Fitri. 2010. Pengenalan Citra Wajah Menggunakan Metode Two-Dimensional Linear Discriminant Analysis Dan Support Vector Machine. Retrieved Mei 7, 2014, from http://kursor.trunojoyo.ac.id/wp-content/uploads/2012/02/vol5_no3_p2.pdf
Abbas, R. 1994. A Prototype System for off-line Signature Verificationusing Multilayered Feedforword Neural Networks. Tesis Departemen RMIT.of Computer Science. Retrieved Mei 12, 2014, from http://eprints.dinus.ac.id/12373/1/jurnal_12301.pdf
Devijver, & Kittler. 1982. Diagonal Based Feature Extraction for Handwritten Alphabets Recognition. Retrieved Juni 18, 2014, from http://rspublication.com/ijca/august%2012/24.pdf
Rajashekararadhya, S., & Ranjan, P. 2008. Efficient zone based feature extration algorithm for handwritten numeral recognition of four popular South Indian scripts. Journal of Theoretical and Applied Information Technology , 1171-1181.
Nugroho, A. S. 2003. Support Vector Machine - Teori dan Aplikasinya dalam Bioinformatika1. Retrieved Mei 12, 2014, from http://asnugroho.net/papers/ikcsvm.pdf
DOI: http://dx.doi.org/10.24014/sitekin.v12i2.981
Refbacks
- There are currently no refbacks.
Copyright (c) 2015 Jurnal Sains dan Teknologi Industri
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editorial Address: FAKULTAS SAINS DAN TEKNOLOGI UIN SULTAN SYARIF KASIM RIAU Kampus Raja Ali Haji Gedung Fakultas Sains & Teknologi UIN Suska Riau Jl.H.R.Soebrantas No.155 KM 18 Simpang Baru Panam, Pekanbaru 28293 Email: sitekin@uin-suska.ac.id © 2023 SITEKIN, ISSN 2407-0939 |
SITEKIN Journal Indexing:
Google Scholar | Garuda | Moraref | IndexCopernicus | SINTA
SITEKIN by http://ejournal.uin-suska.ac.id/index.php