Temporal Pattern Intelligence: A Recurrent Neural Framework for Enhanced Financial Forecasting

Bayu Firmanto

Abstract


Accurate forecasting of financial time series remains a complex challenge due to asset price behaviour's non-stationary, nonlinear, and cyclical nature. While Long Short-Term Memory (LSTM) networks have shown promise in modeling sequential dependencies, they often struggle to capture periodic structures inherent in financial data. This study proposes a hybrid forecasting framework that integrates temporal pattern recognition techniques—specifically seasonal decomposition, wavelet transforms, and moving averages—into a recurrent neural architecture to improve predictive performance in cyclical markets. Using historical data from five representative financial instruments, the hybrid model enriches the LSTM input space with statistically significant temporal features, thereby enabling more comprehensive learning of both long-term dependencies and structural temporal patterns. Empirical results demonstrate that the proposed model significantly outperforms traditional LSTM baselines in terms of Root Mean Squared Error (RMSE), particularly in assets exhibiting strong cyclical behavior. The residual component from seasonal decomposition emerges as the most influential feature, reinforcing the importance of capturing irregular deviations in financial forecasting. This research contributes a structured and generalizable approach to combining temporal pattern recognition with deep learning, offering improved accuracy and interpretability for practitioners and researchers in computational finance 

Full Text:

PDF

References


Addison, P. S. (2005). Wavelet transforms and the ECG: A review. In Physiological Measurement (Vol. 26, Issue 5). https://doi.org/10.1088/0967-3334/26/5/R01

Alshara, M. A. (2022). Stock Forecasting Using Prophet vs. LSTM Model Applying Time-Series Prediction. IJCSNS International Journal of Computer Science and Network Security, 22(2).

Botunac, I., Bosna, J., & Matetić, M. (2024). Optimization of Traditional Stock Market Strategies Using the LSTM Hybrid Approach. Information (Switzerland), 15(3). https://doi.org/10.3390/info15030136

Brigo, D., Huang, X., Pallavicini, A., & Sáez de Ocáriz Borde, H. (2021). Interpretability in deep learning for finance: a case study for the Heston model. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3829947

Chen, D., Zhang, J., & Jiang, S. (2020). Forecasting the Short-Term Metro Ridership with Seasonal and Trend Decomposition Using Loess and LSTM Neural Networks. IEEE Access, 8. https://doi.org/10.1109/ACCESS.2020.2995044

Chu, X., Cui, W., Xu, S., Zhao, L., Guan, H., & Ge, Y. (2023). Multiscale Time Series Decomposition for Structural Dynamic Properties: Long-Term Trend and Ambient Interference. Structural Control and Health Monitoring, 2023. https://doi.org/10.1155/2023/6485040

Dhake, H., Kashyap, Y., & Kosmopoulos, P. (2023). Algorithms for Hyperparameter Tuning of LSTMs for Time Series Forecasting. Remote Sensing, 15(8). https://doi.org/10.3390/rs15082076

Ding, S., Cui, T., Wu, X., & Du, M. (2022). Supply chain management based on volatility clustering: The effect of CBDC volatility. Research in International Business and Finance, 62. https://doi.org/10.1016/j.ribaf.2022.101690

García-Medina, A., & Aguayo-Moreno, E. (2024). LSTM–GARCH Hybrid Model for the Prediction of Volatility in Cryptocurrency Portfolios. Computational Economics, 63(4). https://doi.org/10.1007/s10614-023-10373-8

Gawlikowski, J., Tassi, C. R. N., Ali, M., Lee, J., Humt, M., Feng, J., Kruspe, A., Triebel, R., Jung, P., Roscher, R., Shahzad, M., Yang, W., Bamler, R., & Zhu, X. X. (2023). A survey of uncertainty in deep neural networks. Artificial Intelligence Review, 56. https://doi.org/10.1007/s10462-023-10562-9

Levy-Loboda, T., Sheetrit, E., Liberty, I. F., Haim, A., & Nissim, N. (2022). Personalized insulin dose manipulation attack and its detection using interval-based temporal patterns and machine learning algorithms. Journal of Biomedical Informatics, 132. https://doi.org/10.1016/j.jbi.2022.104129

Loo, W. K. (2020). Predictability of HK-REITs returns using artificial neural network. Journal of Property Investment and Finance, 38(4). https://doi.org/10.1108/JPIF-07-2019-0090

Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018). Statistical and Machine Learning forecasting methods: Concerns and ways forward. PLOS ONE, 13(3), e0194889. https://doi.org/10.1371/JOURNAL.PONE.0194889

Salisu, A. A., Gupta, R., & Bouri, E. (2023). Testing the forecasting power of global economic conditions for the volatility of international REITs using a GARCH-MIDAS approach. Quarterly Review of Economics and Finance, 88. https://doi.org/10.1016/j.qref.2023.02.004

Sirisha, U. M., Belavagi, M. C., & Attigeri, G. (2022). Profit Prediction Using ARIMA, SARIMA and LSTM Models in Time Series Forecasting: A Comparison. IEEE Access, 10. https://doi.org/10.1109/ACCESS.2022.3224938

Song, Y., Tang, X., Wang, H., & Ma, Z. (2023). Volatility forecasting for stock market incorporating macroeconomic variables based on GARCH-MIDAS and deep learning models. Journal of Forecasting, 42(1). https://doi.org/10.1002/for.2899

Suprihadi, E., Danila, N., & Ali, Z. (2025). Enhancing financial product forecasting accuracy using EMD and feature selection with ensemble models. Journal of Open Innovation: Technology, Market, and Complexity, 11(2), 100531. https://doi.org/10.1016/J.JOITMC.2025.100531

Xu, Z. Q. J., Zhang, Y., Luo, T., Xiao, Y., & Ma, Z. (2020). Frequency principle: Fourier analysis sheds light on deep neural networks. Communications in Computational Physics, 28(5). https://doi.org/10.4208/CICP.OA-2020-0085

Zhichao Zou, Z. Q. (2022). Using LSTM in Stock prediction and Quantitative Trading. Deep Learning, Winter..




DOI: http://dx.doi.org/10.24014/sitekin.v23i1.38342

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 SITEKIN: Jurnal Sains, Teknologi dan Industri




Editorial Address:
FAKULTAS SAINS DAN TEKNOLOGI
UIN SULTAN SYARIF KASIM RIAU

Kampus Raja Ali Haji
Gedung Fakultas Sains & Teknologi UIN Suska Riau
Jl.H.R.Soebrantas No.155 KM 18 Simpang Baru Panam, Pekanbaru 28293
Email: sitekin@uin-suska.ac.id
© 2023 SITEKIN, ISSN 2407-0939

SITEKIN Journal Indexing:

Google Scholar | Garuda | Moraref | IndexCopernicus | SINTA


Creative Commons License
SITEKIN by http://ejournal.uin-suska.ac.id/index.php