Temporal Pattern Intelligence: A Recurrent Neural Framework for Enhanced Financial Forecasting
Abstract
Full Text:
PDFReferences
Addison, P. S. (2005). Wavelet transforms and the ECG: A review. In Physiological Measurement (Vol. 26, Issue 5). https://doi.org/10.1088/0967-3334/26/5/R01
Alshara, M. A. (2022). Stock Forecasting Using Prophet vs. LSTM Model Applying Time-Series Prediction. IJCSNS International Journal of Computer Science and Network Security, 22(2).
Botunac, I., Bosna, J., & Matetić, M. (2024). Optimization of Traditional Stock Market Strategies Using the LSTM Hybrid Approach. Information (Switzerland), 15(3). https://doi.org/10.3390/info15030136
Brigo, D., Huang, X., Pallavicini, A., & Sáez de Ocáriz Borde, H. (2021). Interpretability in deep learning for finance: a case study for the Heston model. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3829947
Chen, D., Zhang, J., & Jiang, S. (2020). Forecasting the Short-Term Metro Ridership with Seasonal and Trend Decomposition Using Loess and LSTM Neural Networks. IEEE Access, 8. https://doi.org/10.1109/ACCESS.2020.2995044
Chu, X., Cui, W., Xu, S., Zhao, L., Guan, H., & Ge, Y. (2023). Multiscale Time Series Decomposition for Structural Dynamic Properties: Long-Term Trend and Ambient Interference. Structural Control and Health Monitoring, 2023. https://doi.org/10.1155/2023/6485040
Dhake, H., Kashyap, Y., & Kosmopoulos, P. (2023). Algorithms for Hyperparameter Tuning of LSTMs for Time Series Forecasting. Remote Sensing, 15(8). https://doi.org/10.3390/rs15082076
Ding, S., Cui, T., Wu, X., & Du, M. (2022). Supply chain management based on volatility clustering: The effect of CBDC volatility. Research in International Business and Finance, 62. https://doi.org/10.1016/j.ribaf.2022.101690
García-Medina, A., & Aguayo-Moreno, E. (2024). LSTM–GARCH Hybrid Model for the Prediction of Volatility in Cryptocurrency Portfolios. Computational Economics, 63(4). https://doi.org/10.1007/s10614-023-10373-8
Gawlikowski, J., Tassi, C. R. N., Ali, M., Lee, J., Humt, M., Feng, J., Kruspe, A., Triebel, R., Jung, P., Roscher, R., Shahzad, M., Yang, W., Bamler, R., & Zhu, X. X. (2023). A survey of uncertainty in deep neural networks. Artificial Intelligence Review, 56. https://doi.org/10.1007/s10462-023-10562-9
Levy-Loboda, T., Sheetrit, E., Liberty, I. F., Haim, A., & Nissim, N. (2022). Personalized insulin dose manipulation attack and its detection using interval-based temporal patterns and machine learning algorithms. Journal of Biomedical Informatics, 132. https://doi.org/10.1016/j.jbi.2022.104129
Loo, W. K. (2020). Predictability of HK-REITs returns using artificial neural network. Journal of Property Investment and Finance, 38(4). https://doi.org/10.1108/JPIF-07-2019-0090
Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018). Statistical and Machine Learning forecasting methods: Concerns and ways forward. PLOS ONE, 13(3), e0194889. https://doi.org/10.1371/JOURNAL.PONE.0194889
Salisu, A. A., Gupta, R., & Bouri, E. (2023). Testing the forecasting power of global economic conditions for the volatility of international REITs using a GARCH-MIDAS approach. Quarterly Review of Economics and Finance, 88. https://doi.org/10.1016/j.qref.2023.02.004
Sirisha, U. M., Belavagi, M. C., & Attigeri, G. (2022). Profit Prediction Using ARIMA, SARIMA and LSTM Models in Time Series Forecasting: A Comparison. IEEE Access, 10. https://doi.org/10.1109/ACCESS.2022.3224938
Song, Y., Tang, X., Wang, H., & Ma, Z. (2023). Volatility forecasting for stock market incorporating macroeconomic variables based on GARCH-MIDAS and deep learning models. Journal of Forecasting, 42(1). https://doi.org/10.1002/for.2899
Suprihadi, E., Danila, N., & Ali, Z. (2025). Enhancing financial product forecasting accuracy using EMD and feature selection with ensemble models. Journal of Open Innovation: Technology, Market, and Complexity, 11(2), 100531. https://doi.org/10.1016/J.JOITMC.2025.100531
Xu, Z. Q. J., Zhang, Y., Luo, T., Xiao, Y., & Ma, Z. (2020). Frequency principle: Fourier analysis sheds light on deep neural networks. Communications in Computational Physics, 28(5). https://doi.org/10.4208/CICP.OA-2020-0085
Zhichao Zou, Z. Q. (2022). Using LSTM in Stock prediction and Quantitative Trading. Deep Learning, Winter..
DOI: http://dx.doi.org/10.24014/sitekin.v23i1.38342
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 SITEKIN: Jurnal Sains, Teknologi dan Industri
![]() | Editorial Address: FAKULTAS SAINS DAN TEKNOLOGI UIN SULTAN SYARIF KASIM RIAU Kampus Raja Ali Haji Gedung Fakultas Sains & Teknologi UIN Suska Riau Jl.H.R.Soebrantas No.155 KM 18 Simpang Baru Panam, Pekanbaru 28293 © 2023 SITEKIN, ISSN 2407-0939 |
SITEKIN Journal Indexing:
Google Scholar | Garuda | Moraref | IndexCopernicus | SINTA

SITEKIN by http://ejournal.uin-suska.ac.id/index.php
.png)






