Implementation of Completely Randomized Design (CRD) using R Software to Evaluate Linear Algebra Learning Systems Pasca the Covid-19 Pandemic

Justin Eduardo Simarmata, Debora Chrisinta

Abstract


Completely Randomized Design (CRD) is an experimental design that is applied based on treatment control by researchers. In this study, CRD was applied to evaluate the learning system of the Linear Algebra course pasca the Covid-19 pandemic using R Software. The experiment was carried out as many as 2 tests which were categorized as learning group 1 consisting of 28 students and learning group 2 consisting of 29 students. The treatment given is based on the learning system before the Covid-19 pandemic which was carried out face-to-face, during the pandemic which was carried out online and pasca the pandemic which was carried out in a mixed manner (face-to-face and online). The online learning system during the pandemic provides better student learning outcomes than face-to-face or through a blended learning system. However, this must be further evaluated for environmental conditions and learning models so that they can be applied to the learning system pasca the Covid-19 pandemic.

Full Text:

PDF

References


W. Oviana and M. Jannah, “Persepsi Mahasiswa PGMI UIN AR-RANIRY Terhadap Sistem Pembelajaran Online Pada Masa Awal Pandemi Covid-19,” PIONIR: Jurnal Pendidikan, vol. 11, no. 2, pp. 66–86, 2022, doi: 10.22373/pjp.v11i2.13641.

S. Syarifuddin, H. Basri, M. Ilham, and A. F. Fauziah, “Efektifitas Pembelajaran Daring Mahasiswa Pendidikan Matematika ditengah Pandemi Covid-19,” JagoMIPA: Jurnal Pendidikan Matematika dan IPA, vol. 1, no. 1, pp. 1–8, 2021, doi: 10.53299/jagomipa.v1i1.16.

J. E. Simarmata and F. Mone, “The Covid-19 Pandemic Era: The Effectiveness Of Google Classroom Media In Discrete Mathematics Learning in Terms of Student Learning Outcomes,” MES: Journal of Mathematics Education and Science, vol. 7, no. 1, pp. 21–28, 2021, doi: 10.30743/mes.v7i1.4381.

M. F. Annur and H. Hermansyah, “Analisis kesulitan mahasiswa pendidikan matematika dalam pembelajaran daring pada masa pandemi covid-19,” Paedagoria: Jurnal Kajian, Penelitian dan Pengembangan Kependidikan, vol. 11, no. 2, pp. 195–201, 2020, doi: 10.31764/paedagoria.v11i2.2544.

M. Turmuzi and N. Hikmah, “Hubungan Pembelajaran Daring Google Classroom Pada Masa COVID-19 dan Motivasi Belajar Terhadap Hasil Belajar Mahasiswa Pendidikan Matematika,” Jurnal Cendekia: Jurnal Pendidikan Matematika, vol. 5, no. 2, pp. 1512–1523, 2021, doi: 10.31004/cendekia.v5i2.667.

A. Effendi, Fatimah, A. T., and A. Amam, “Analisis keefektifan pembelajaran matematika online di masa pandemi covid-19,” Teorema: Teori Dan Riset Matematika, vol. 6, no. 2, pp. 250–259, 2021, doi: 10.25157/teorema.v6i2.5632.

Y. Cao, S. Zhang, M. C. E. Chan, and Y. Kang, “Post-pandemic reflections: Lessons from Chinese mathematics teachers about online mathematics instruction,” Asia Pacific Education Review, vol. 22, pp. 157–168, 2021, doi: 10.1007/s12564-021-09694-w.

K. F. Hollebrands and H. S. Lee, “Effective design of massive open online courses for mathematics teachers to support their professional learning,” ZDM Mathematics Education , vol. 52, pp. 859–875, 2020, doi: 10.1007/s11858-020-01142-0.

A. P. Rini, “Students Perceptions of Mathematics Education on Online Learning at STKIP Tunas Palapa Central Lampung,” Bulletin of Science Education, vol. 2, no. 2, pp. 68–80, 2022, doi: 10.51278/bse.v2i2.356.

D. Y. Bobyliev and E. V. Vihrova, “Problems and prospects of distance learning in teaching fundamental subjects to future mathematics teachers,” in Journal of physics: Conference series, 2022, vol. 13, no. 1, p. 012002. doi: 10.1088/1742-6596/1840/1/012002.

S. M. Panjaitan et al., “Implementation Of Online Learning and its Impact on Learning Achievements Of Mathematics Education Students,” Infinity Journal, vol. 12, no. 1, pp. 41–54, 2023, doi: 10.22460/infinity.v12i1.p41-54.

F. , I. A. L. Aloufi, A. M. A. Elsayed, Y. Wardat, and A. O. Ahmed, “Virtual mathematics education during COVID-19: An exploratory study of teaching practices for teachers in simultaneous virtual classes,” International Journal of Learning, Teaching and Educational Research, vol. 20, no. 12, pp. 85–113, 2021, doi: 10.26803/ijlter.20.12.6.

C. , & M. T. Müller, “Facilitating flexible learning by replacing classroom time with an online learning environment: A systematic review of blended learning in higher education,” Educ Res Rev, pp. 3–9, 2021, doi: 10.1016/j.edurev.2021.100394.

D. C. Van Alten, C. Phielix, J. Janssen, and L. Kester, “Effects of flipping the classroom on learning outcomes and satisfaction: A meta-analysis,” Educ Res Rev, vol. 28, no. 100281, 2019, doi: 10.1016/j.edurev.2019.05.003.

Y. Alamsyah, “Pengaruh Penggunaan Model Pembelajaran Team Games Tournament (TGT) DAN Role Playing Terhadap Hasil Belajar,” Jurnal Pendidikan, vol. 20, no. 2, pp. 135–146, 2019, doi: 10.33830/jp.v20i2.254.2019.

R. Wijayanti and R. Rachmawati, “Pengaruh Acak Efektivitas Penggunaan Perangkat Matematika Augmented Reality Pada Materi Bangun Ruang,” Prismatika: Jurnal Pendidikan dan Riset Matematika, vol. 3, no. 2, pp. 162–171, 2021, doi: 10.33503/prismatika.v3i2.1278.

D. Weisburd, David B. Wilson, Alese Wooditch, and Chester Britt, “Randomized experiments,” Advanced Statistics in Criminology and Criminal Justice, vol. V, pp. 367–416, 2022, doi: 10.1007/978-3-030-67738-1_9.

H. Li, G. Zhao, R. Johari, and G. Y. Weintraub, “Interference, bias, and variance in two-sided marketplace experimentation: Guidance for platforms,” in Proceedings of the ACM Web Conference, 2022, vol. 7, pp. 182–192. doi: 10.1145/3485447.3512063.

H. Alkutubi, R. Abod, and O. Jabber, “Statistical Analysis of the Number of Infections with Corona Virus in Some Arab Countries Using the Method of Least Significant Difference,” Journal of Kufa for Mathematics and Computer, vol. 9, no. 2, pp. 38–52, 2022, doi: 10.31642/JoKMC/2018/090205.

L. J. Williams and H. Abdi, “Fisher’s least significant difference (LSD) test,” Encyclopedia of research design, vol. 218, no. 4, pp. 840–853, 2010, doi: 10.1007/978-0-387-32833-1_226.

D. Chrisinta, L. P. Gelu, and B. Baso, “Identifikasi Sebaran Karakteristik Kriminal di Indonesia Tahun 2021 Menggunakan Model-Based Clustering,” Journal of Mathematics, Computations and Statistics, vol. 5, no. 2, pp. 98–105, 2022, doi: 10.35580/jmathcos.v5i2.36956.




DOI: http://dx.doi.org/10.24014/sitekin.v22i1.22226

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 SITEKIN: Jurnal Sains, Teknologi dan Industri




Editorial Address:
FAKULTAS SAINS DAN TEKNOLOGI
UIN SULTAN SYARIF KASIM RIAU

Kampus Raja Ali Haji
Gedung Fakultas Sains & Teknologi UIN Suska Riau
Jl.H.R.Soebrantas No.155 KM 18 Simpang Baru Panam, Pekanbaru 28293
Email: sitekin@uin-suska.ac.id
© 2023 SITEKIN, ISSN 2407-0939

SITEKIN Journal Indexing:

Google Scholar | Garuda | Moraref | IndexCopernicus | SINTA


Creative Commons License
SITEKIN by http://ejournal.uin-suska.ac.id/index.php