Implementation of Data Mining to Classify Potential Customers Using the C5.0 Algorithm

Muhammad Rizki, Cintya Nil Maghfirah, Fitra Lestari Norhiza, Nofirza Nofirza, Fitriani Surayya Lubis

Abstract


PT Pegadaian, as listed on its official website, is a fast-growing financial company. One of its key challenges is late installment payments, which can lead to financial losses. Using pawn customer data from 2013 to 2021, this study found that out of 534 customers, 68 were late in paying installments, and 10 did not pay. To address this issue, this research applies customer classification to identify borrowers who are more likely to pay on time. The classification model is developed using data mining with the C5.0 algorithm to generate decision-tree rules. Prior to modeling, the dataset is processed through the Knowledge Discovery in Databases (KDD) stages, including data selection, cleaning, and transformation. The proposed model produces 26 classification rules and achieves an accuracy of 87.04%. All data processing, modeling, and validation are conducted using RapidMiner Studio.

Keywords: Classification, Decision Tree, C5.0 Algorithm, Data Mining

Full Text:

PDF

References


M. K.Jayaswal, “Learning Eoq Model With Trade-Credit Financing Policy For Imperfect Quality Items Under Cloudy Fuzzy Environment,” Mathematics, Vol. 10, No. 2, 2022, Doi: 10.3390/Math10020246.

M.Kumari, “An Eoq Model For Deteriorating Items Analyzing Retailer’s Optimal Strategy Under Trade Credit And Return Policy With Nonlinear Demand And Resalable Returns,” International Journal Of Optimization And Control: Theories And Applications, Vol. 12, No. 1, Pp. 47–55, 2022, Doi: 10.11121/Ijocta.2022.1025.

J.Gong, “Determination Of Key Components In Automobile Braking Systems Based On Abc Classification And Fmeca,” Journal Of Traffic And Transportation Engineering (English Edition), Vol. 9, No. 1, Pp. 69–77, 2022, Doi: 10.1016/J.Jtte.2019.01.008.

Y. C.Hsu, “Abc-Norm Regularization For Fine-Grained And Long-Tailed Image Classification,” Ieee Transactions On Image Processing, Vol. 32, Pp. 3885–3896, 2023, Doi: 10.1109/Tip.2023.3273455.

G.Houge, “Stepwise Abc System For Classification Of Any Type Of Genetic Variant,” European Journal Of Human Genetics, Vol. 30, No. 2, Pp. 150–159, 2022, Doi: 10.1038/S41431-021-00903-Z.

A.Lefteh, “Optimization Of Modified Adaptive Neuro-Fuzzy Inference System (Manfis) With Artificial Bee Colony (Abc) Algorithm For Classification Of Bone Cancer,” 2022. Doi: 10.1109/Dchpc55044.2022.9731840.

H. K.Dreiner, “The Abc Of Rpv: Classification Of R-Parity Violating Signatures At The Lhc For Small Couplings,” Journal Of High Energy Physics, Vol. 2023, No. 7, 2023, Doi: 10.1007/Jhep07(2023)215.

K. S.Dorman Andr.Maitra, “An Efficient K-Modes Algorithm For Clustering Categorical Datasets,” Statistical Analysis And Data Mining, Vol. 15, No. 1, Pp. 83–97, 2022, Doi: 10.1002/Sam.11546.

K.Kim, “A Weighted K-Modes Clustering Using New Weighting Method Based On Within-Cluster And Between-Cluster Impurity Measures,” Journal Of Intelligent & Fuzzy Systems, Vol. 32, No. 1, Pp. 979–990, 2017, Doi: 10.3233/Jifs-16157.

Y.Son, “Development Of Methodology For Classification Of User Experience (Ux) In Online Customer Review,” Journal Of Retailing And Consumer Services, Vol. 71, 2023, Doi: 10.1016/J.Jretconser.2022.103210.

R.Krittayaphong, “Clinical Phenotype Classification To Predict Risk And Optimize The Management Of Patients With Atrial Fibrillation Using The Atrial Fibrillation Better Care (Abc) Pathway: A Report From The Cool-Af Registry,” Qjm: An International Journal Of Medicine, Vol. 117, No. 1, Pp. 16–23, 2024, Doi: 10.1093/Qjmed/Hcad219.

P.Dobra, “Cumulative And Rolling Horizon Prediction Of Overall Equipment Effectiveness (Oee) With Machine Learning,” Big Data And Cognitive Computing, Vol. 7, No. 3, 2023, Doi: 10.3390/Bdcc7030138.

A.Belhadi, “The Integrated Effect Of Big Data Analytics, Lean Six Sigma And Green Manufacturing On The Environmental Performance Of Manufacturing Companies: The Case Of North Africa,” Journal Of Cleaner Production, Vol. 252, 2020, Doi: 10.1016/J.Jclepro.2019.119903.

H.Yao, “Identification Of Encrypted Traffic Through Attention Mechanism Based Long Short Term Memory,” Ieee Transactions On Big Data, Vol. 8, No. 1, Pp. 241–252, 2022, Doi: 10.1109/Tbdata.2019.2940675.

F.Yuan, Y. L.Yang, Andt. T.Yuan, “A Dissimilarity Measure For Mixed Nominal And Ordinal Attribute Data In K-Modes Algorithm,” Applied Intelligence, Vol. 50, No. 5, Pp. 1498–1509, 2020, Doi: 10.1007/S10489-019-01583-5.

D. T.Dinh Andv. N.Huynh, “K-Pbc: An Improved Cluster Center Initialization For Categorical Data Clustering,” Applied Intelligence, Vol. 50, No. 8, Pp. 2610–2632, 2020, Doi: 10.1007/S10489-020-01677-5.

S.Bensalem, S.Naouali, Andz.Chtourou, “Rough Mode: A Generalized Centroid Proposal For Clustering Categorical Data Using The Rough Set Theory,” In Big Data And Smart Digital Environment, Vol. 53, 2019, P. 225. Doi: 10.1007/978-3-030-12048-1_24.

F. Y.Cao Et Al., “An Algorithm For Clustering Categorical Data With Set-Valued Features,” Ieee Transactions On Neural Networks And Learning Systems, Vol. 29, No. 10, Pp. 4593–4606, 2018, Doi: 10.1109/Tnnls.2017.2770167.

I.Saha, J. P.Sarkar, Andu.Maulik, “Integrated Rough Fuzzy Clustering For Categorical Data Analysis,” Fuzzy Sets And Systems, Vol. 361, Pp. 1–32, 2019, Doi: 10.1016/J.Fss.2018.02.007.

F. O.Defrança, “A Hash-Based Co-Clustering Algorithm For Categorical Data,” Expert Systems With Applications, Vol. 64, Pp. 24–35, 2016, Doi: 10.1016/J.Eswa.2016.07.024.

L.Bai Andj. Y.Liang, “Cluster Validity Functions For Categorical Data: A Solution-Space Perspective,” Data Mining And Knowledge Discovery, Vol. 29, No. 6, Pp. 1560–1597, 2015, Doi: 10.1007/S10618-014-0387-5.

S.Bensalem, S.Naouali, Andz.Chtourou, “Rough Mode: A Generalized Centroid Proposal For Clustering Categorical Data Using The Rough Set Theory,” In Big Data And Smart Digital Environment, Vol. 53, Y.Farhaoui Andl.Moussaid, Eds., Polytech Sch Tunisia, Bp 743,Rue El Khawarizmi, Tunis 2078, Tunisia Mil Acad Fondouk Jedid, Virtual Real & Informat Technol, Tunis, Tunisia Digital Res Ctr Sfax, Bp 275, Sfax 3021, Tunisia, 2019, Pp. 225–236. Doi: 10.1007/978-3-030-12048-1_24 10.1007/978-3-030-12048-1.




DOI: http://dx.doi.org/10.24014/jti.v11i1.39167

Refbacks

  • There are currently no refbacks.


Copyright (c) 2026 Muhammad Rizki

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

                                                                                                                                                                                                                                     

Jurnal Teknik Industri

P-ISSN 2460-898X | E-ISSN 2714-6235

Published by:

Industrial Engineering Department

Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia

Office Address:

H.R. Soebrantas KM 15.5, Tampan, Pekanbaru, Riau, Indonesia 28293

email: jti.fst@uin-suska.ac.id

 

Indexed by:

      

     

 

 

Creative Commons License

 

JTI : Jurnal Teknik Industri under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.