Predictive Maintenance on Dry 8 Production Machine Line Using Support Vector Machine (SVM)

Mohammad Andi Rasyid, Tedjo Sukmono, Ribangun Bamban Jakaria

Abstract


Machines are the main element in manufacturing companies, and the role of machine performance is vital in the production process. Downtime problems caused by machine damage can significantly affect company productivity. This research implements the support vector machine (SVM) method for predicting Dry 8 production machine line maintenance, which aims to reduce downtime and increase productivity. The SVM method is known for its high accuracy and low error rate. The evaluation process used four kernel functions: linear, radial basis function (RBF), polynomial and sigmoid. The linear kernel function performed best with 99.8% accuracy, 83% precision, recall, and f1-score. These results show that the SVM method can be a viable solution to improve the efficiency of machine maintenance.

 

Keywords: Confusion Matrix, Machine Learning, Predictive Maintenance, Support Vector Machine

 


Full Text:

PDF

References


N. Khumaidah, and T. Sukmono, “Forecasting the Number of Offset Printing Machine Breakdowns Using the Support Vector Machine (SVM) Metdhod,” Procedia of Engineering and Life Science, 2021. https://doi.org/10.21070/pels.v1i2.1027.

U. Farooq, M. Ademola, and A. Shaalan, “Comparative Analysis of Machine Learning Models for Predictive Maintenance of Ball Bearing Systems,” Electronics, vol. 13, no. 2, 2024. https://doi.org/10.3390/electronics13020438.

S. C. R. H. Haliza, and A. Qoiriah, “Predictive Maintenance untuk Kendaraan Bermotor dengan Menggunakan Support Vector Machine (SVM),” Journal of Informatics and Computer Science, vol. 2, no. 3, pp. 159-168, 2021. https://doi.org/10.26740/jinacs.v2n03.p159-168.

S. Saha, “An Empirical Comparison of Linear and Non-linear Classification Using Support Vector Machines,” Article in International Journal of Computer Sciences International Journal of Computer Sciences and Engineering, vol. 11, no. 1, pp. 120–126, 2023.

D. Kusumaningrum, N. Kurniati, and B. Santosa, “Machine Learning for Predictive Maintenance,” Proceedings of the International Conference on Industrial Engineering and Operations Management, 2021. http://dx.doi.org/10.46254/SA02.20210717.

A. Fitra Azyus and S. K. Wijaya, “Determining the Method of Predictive Maintenance for Aircraft Engine Using Machine Learning,” Journal of Computer Science and Technology Studies, vol. 4, no. 1, pp. 1-6. http://dx.doi.org/10.32996/jcsts.2022.4.1.1.

M. Tarik, A. Mniai, and K. Jebari, “Hybrid Feature Selection and Support Vector Machine Framework for Predicting Maintenance Failures,” Applied Computer Science, vol. 19, no. 2, pp. 112–124, 2023. https://doi.org/10.35784/acs-2023-18.

I. Assagaf, A. Sukandi, A. A. Abdillah, S. Arifin, and J. L. Ga, “Machine Predictive Maintenance by Using Support Vector Machines,” Recent in Engineering Science and Technology, vol. 1, no. 1, pp. 31–35, 2023. https://doi.org/10.59511/riestech.v1i01.6.

B. F. Wiguna, H. Herlawati, A. Y. P. Yusuf, “Sentiment Analysis of On-Demand Ride-Hailing Systems using Support Vector Machine and Naïve Bayes,” Penelitian Ilmu Komputer, Sistem Embedded and Logic, vol. 11, no. 2, pp. 401-414, 2023. https://doi.org/10.33558/piksel.v11i2.7384.

D. Widyawati and A. Faradibah, “Comparison Analysis of Classification Model Performance in Lung Cancer Prediction Using Decision Tree, Naive Bayes, and Support Vector Machine,” Indonesian Journal of Data and Science, vol. 4, no. 2, pp. 80–89, 2023. https://doi.org/10.56705/ijodas.v4i2.76.

I. T. Julianto, D. Kurniadi, M. R. Nashrulloh, and A. Mulyani, “Comparison of Data Mining Algorithm for Forecasting Bitcoin Crypto Currency Trends,” Jurnal Teknik Informatika (JUTIF), vol. 3, no. 2, pp. 245–248, 2022. https://doi.org/10.20884/1.jutif.2022.3.2.194.

N. Srividhya, K. Divya, N. Sanjana, K. Krishna Kumari, and M. Rambhupal, “Diabetes Prediction Using Support Vector Machines,” International Journal of Multidisciplinary Research (IJMR), vol. 9, no. 10, pp. 421-426, 2023. https://doi.org/10.36713/epra14769.

A. Desiani, “Penerapan Metode Support Vector Machine dalam Klasifikasi Bungan Iris,” IJAI (Indonesian Journal of Applied Informatics), vol. 7, no. 1, pp. 12-18, 2022. https://doi.org/10.20961/ijai.v7i1.61486.

B. Sharma and N. K. Goel, “Streamflow Prediction Using Support Vector Regression Machine Learning Model for Tehri Dam,” Appl Water Sci, vol. 14, no. 5, p. 99, 2024. https://doi.org/10.1007/s13201-024-02135-0.

U. Amelia, J. Indra, and A. F. N. Masruriyah, “Implementasi Algoritma Support Vector Machine (SVM) untuk Prediksi Penyakit Stroke dengan Atribut Berpengaruh,” Scientific Student Journal for Information, Technology and Science, vol. 3, no. 2, pp. 254-259, 2022.

N. Pratiwi and Y. Setyawan, “Analisis Akurasi dari Perbedaan Fungsi Kernel dan Cost pada Support Vector Machine Studi Kasus Klasifikasi Curah Hujan di Jakarta,” Journal of Fundamental Mathematics and Applications (JFMA), vol. 4, no. 2, pp. 203–212, 2021. https://doi.org/10.14710/jfma.v4i2.11691.

T. Meisya, P. Aulia, N. Arifin, and R. Mayasari, “Perbandingan Kernel Support Vector Machine (SVM) dalam Penerapan Analisis Sentimen Vaksinisasi Covid-19,” SEINTECH Journal, vol. 4, no. 2, pp. 139-145, 2021. https://doi.org/10.31598.

B. Duraisamy, R. Sunku, K. Selvaraj, M. Sanikala, and V. V. R. Pilla, “Heart Disease Prediction Using Support Vector Machine,” Multidisciplinary Science Journal, vol. 6, pp. 1-6, 2023, doi: 10.31893/multiscience.2024ss0104.

I. Wirasati, Z. Rustam, J. E. Aurelia, S. Hartini, and G. S. Saragih, “Comparison Some of Kernel Functions with Support Vector Machines Classifier for Thalassemia Dataset,” IAES International Journal of Artificial Intelligence (IJ-AI), vol. 10, no. 2, pp. 430-437, 2021. https://doi.org/10.31893/multiscience.2024ss0104.

N. E. Febriyanty, M. Amin Hariyadi, C. Crysdian, and M. A. Hariyadi, “Hoax Detection News Using Naïve Bayes and Support Vector Machine Algorithm,” International Journal of Advances in Data and Information Systems, vol. 4, no. 2, pp. 191–200, 2023. https://doi.org/10.25008/ijadis.v4i2.1306.

M. Awad dan R. Khanna, Efficient Learning Machines: Theories, concepts, and applications for engineers and system designers, Springer Nture, 2015.

W. Dirgantara, F. Iqbal Maulana, S. Subairi, and R. Arifuddin, “The Performance of Machine Learning Model Bernoulli Naïve Bayes, Support Vector Machine, and Logistic Regression on COVID-19 in Indonesia using Sentiment Analysis,” Jurnal Ilmiah Elektronika, vol. 23, no. 1, pp. 153-162. https://doi.org/10.31358/techne.v23i1.446.

A. Andryani, A. N. Salim, and T. Sutabri, “Deteksi Email Spam dan Non-Spam Berdasarkan isi Konten Menggunakan Metode K-Nearest Neighbor dan Support Vector Machine,” Journal Sintax Idea, vol. 6, no. 3, pp. 1-14, 2024. https://doi.org/10.46799/syntax-idea.v6i2.3052.

D. Rizaldi, I. Ratna, I. Astutik, and M. A. Rosid, “Classification of Sentiment Analysis of Memes on Kaggle.com Using Support Vector Machine Algorithm,” Procedia of Engineering and Life Science, vol. 7, pp. 184-190, 2024. https://doi.org/10.21070/pels.v7i0.1194.

N. A’ayunnisa, Y. Salim, and H. Azis, “Analisis Performa Metode Gaussian Naïve Bayes untuk Klasifikasi Citra Tulisan Tangan Karakter Arab,” Indonesian Journal of Data and Science (IJODAS), vol. 3, no. 3, pp. 115–121, 2022. https://doi.org/10.31598.

D. Leni, M. Chamim, R. Sumiati, and Y. Rosa, “Modeling Mechanical Component Classification Using Support Vector Machine with A Radial Basis Function Kernel,” JURNAL Teknik Mesin, vol. 16, no. 2, pp. 165–174, 2023. https://doi.org/10.30630/jtm.16.2.1250.

Y. Liang, J. Wu, Q. Zeng, Y. Zhao, K. Ma, X. Zhang, Q. Yang, J. Zhang, and Y. Qi, “Rapid Identification of the Species of Bloodstain Based on Near Infrared Spectroscopy and Convolutional Neural Network-Support Vector Machine Algorithm,” J Braz Chem Soc, vol. 35, no. 8, pp. 1-6, 2024. https://dx.doi.org/10.21577/0103-5053.20240023.

Y. Feng, “Support Vector Machine for Stroke Risk Prediction,” Highlights in Science, Engineering and Technology, vol. 38, pp. 917-923, 2023. https://doi.org/10.54097/hset.v38i.5977.

M. Daffa, A. Fahreza, A. Luthfiarta, M. Rafid, M. Indrawan, and A. Nugraha, “Analisis Sentimen: Pengaruh Jam Kerja Terhadap Kesehatan Mental Generasi Z,” Journal Of Applied Computer Science And Technology (JACOST), vol. 5, no. 1, pp. 2723–1453, 2024. https://doi.org/10.52158/jacost.v5i1.715.

B. Raharjo, Pembelajaran Mesin (Machine Learning), Semarang: Yayasan Prima Agus Teknik, 2021.




DOI: http://dx.doi.org/10.24014/jti.v10i2.29802

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Mohammad Andi Rasyid

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

                                                                                                                                                                                                                                     

Jurnal Teknik Industri

P-ISSN 2460-898X | E-ISSN 2714-6235

Published by:

Industrial Engineering Department

Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia

Office Address:

H.R. Soebrantas KM 15.5, Tampan, Pekanbaru, Riau, Indonesia 28293

email: jti.fst@uin-suska.ac.id

 

Indexed by:

      

       

 

Creative Commons License

 

JTI : Jurnal Teknik Industri under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.