Classification of Apple Tree Leaf Diseases using Pretrained EfficientNetB0 and XGBoost
Abstract
Keywords
References
S. Bashir, F. Firdous, and S. Z. Rufai, “A Comprehensive Review on Apple Leaf Disease Detection,” in 2023 IEEE 8th International Conference for Convergence in Technology (I2CT), IEEE, Apr. 2023, pp. 1–6. doi: 10.1109/I2CT57861.2023.10126487.
V. K. Vishnoi, K. Kumar, B. Kumar, S. Mohan, and A. A. Khan, “Detection of Apple Plant Diseases Using Leaf Images Through Convolutional Neural Network,” IEEE Access, vol. 11, pp. 6594–6609, 2023, doi: 10.1109/ACCESS.2022.3232917.
S. Chakraborty, S. Paul, and M. Rahat-uz-Zaman, “Prediction of Apple Leaf Diseases Using Multiclass Support Vector Machine,” in 2021 2nd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), IEEE, Jan. 2021, pp. 147–151. doi: 10.1109/ICREST51555.2021.9331132.
S. K, V. R. P, R. P, P. K. M, and P. S, “Apple Leaf Disease Detection using Deep Learning,” in 2022 6th International Conference on Computing Methodologies and Communication (ICCMC), IEEE, Mar. 2022, pp. 1063–1067. doi: 10.1109/ICCMC53470.2022.9753985.
Y. Zhong and M. Zhao, “Research on deep learning in apple leaf disease recognition,” Comput. Electron. Agric., vol. 168, p. 105146, Jan. 2020, doi: 10.1016/j.compag.2019.105146.
E. Kannan, C. M. B. M J, A. D. S, R. N. N, A. Begum, and H. D, “Deep Learning Techniques Advancements in Apple Leaf Disease Detection,” Procedia Comput. Sci., vol. 235, pp. 713–722, 2024, doi: 10.1016/j.procs.2024.04.068.
B. Liu, X. Huang, L. Sun, X. Wei, Z. Ji, and H. Zhang, “MCDCNet: Multi-scale constrained deformable convolution network for apple leaf disease detection,” Comput. Electron. Agric., vol. 222, p. 109028, Jul. 2024, doi: 10.1016/j.compag.2024.109028.
H. Wang, J. Zhang, Z. Yin, L. Huang, J. Wang, and X. Ma, “A deep evidence fusion framework for apple leaf disease classification,” Eng. Appl. Artif. Intell., vol. 136, p. 109011, Oct. 2024, doi: 10.1016/j.engappai.2024.109011.
B. U. Rani, K. Pavani, S. Bhavani, and G. Alapati, “A Systematic Analysis of Deep Learning and Machine Learning Methods for Identifying Apple Leaf Disease,” in 2023 4th International Conference on Electronics and Sustainable Communication Systems (ICESC), IEEE, Jul. 2023, pp. 761–765. doi: 10.1109/ICESC57686.2023.10192948.
M. Sebastian, S. M S, and C. M. Antony, “Apple Leaf Disease Detection: Machine Learning & Deep Learning Techniques,” in 2023 Intelligent Computing and Control for Engineering and Business Systems (ICCEBS), IEEE, Dec. 2023, pp. 1–5. doi: 10.1109/ICCEBS58601.2023.10449037.
H. Syamsudin, S. Khalidah, and J. Unjung, “Lepidoptera Classification Using Convolutional Neural Network EfficientNet-B0,” Indones. J. Artif. Intell. Data Min., vol. 7, no. 1, p. 47, Nov. 2023, doi: 10.24014/ijaidm.v7i1.24586.
S. Zhu, W. Ma, J. Lu, B. Ren, C. Wang, and J. Wang, “A novel approach for apple leaf disease image segmentation in complex scenes based on two-stage DeepLabv3+ with adaptive loss,” Comput. Electron. Agric., vol. 204, p. 107539, Jan. 2023, doi: 10.1016/j.compag.2022.107539.
C. Yan and K. Yang, “FSM-YOLO: Apple leaf disease detection network based on adaptive feature capture and spatial context awareness,” Digit. Signal Process., vol. 155, p. 104770, Dec. 2024, doi: 10.1016/j.dsp.2024.104770.
O. H. Kesav and R. G. K, “A Systematic Study on Enhanced Deep Learning Based Methodologies for Detection and Classification of Early Stage Cancers,” in 2023 IEEE 5th International Conference on Cybernetics, Cognition and Machine Learning Applications (ICCCMLA), IEEE, Oct. 2023, pp. 328–333. doi: 10.1109/ICCCMLA58983.2023.10346973.
S. Qian, T. Peng, Z. Tao, X. Li, M. S. Nazir, and C. Zhang, “An evolutionary deep learning model based on XGBoost feature selection and Gaussian data augmentation for AQI prediction,” Process Saf. Environ. Prot., vol. 191, pp. 836–851, Nov. 2024, doi: 10.1016/j.psep.2024.08.119.
Kaggle, “Apple Tree Leaf Disease Dataset,” Kaggle. Accessed: Oct. 02, 2024. [Online]. Available: https://www.kaggle.com/datasets/nirmalsankalana/apple-tree-leaf-disease-dataset
N. R. Billa, B. P. Das, M. Biswal, and M. Okade, “CNN based image resizing forensics for double compressed JPEG images,” J. Inf. Secur. Appl., vol. 81, p. 103693, Mar. 2024, doi: 10.1016/j.jisa.2023.103693.
M. T R, M. Gupta, A. T A, V. Kumar V, O. Geman, and D. Kumar V, “An XAI-enhanced efficientNetB0 framework for precision brain tumor detection in MRI imaging,” J. Neurosci. Methods, vol. 410, p. 110227, Oct. 2024, doi: 10.1016/j.jneumeth.2024.110227.
Bhoomika and G. Verma, “Enhancing Coffee Plant Disease Identification with EfficientNetB0 and Deep Learning,” in 2024 8th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), IEEE, Oct. 2024, pp. 1423–1427. doi: 10.1109/I-SMAC61858.2024.10714676.
M. Niazkar et al., “Applications of XGBoost in water resources engineering: A systematic literature review (Dec 2018–May 2023),” Environ. Model. Softw., vol. 174, p. 105971, Mar. 2024, doi: 10.1016/j.envsoft.2024.105971.
K. M. K. Raghunath, V. V. Kumar, M. Venkatesan, K. K. Singh, T. R. Mahesh, and A. Singh, “XGBoost Regression Classifier (XRC) Model for Cyber Attack Detection and Classification Using Inception V4,” J. Web Eng., Apr. 2022, doi: 10.13052/jwe1540-9589.21413.
D. A. A. Pertiwi, K. Ahmad, S. N. Salahudin, A. M. Annegrat, and M. A. Muslim, “Using Genetic Algorithm Feature Selection to Optimize XGBoost Performance in Australian Credit,” J. Soft Comput. Explor., vol. 5, no. 1, pp. 92–98, Apr. 2024, doi: 10.52465/joscex.v5i1.302.
M. Heydarian, T. E. Doyle, and R. Samavi, “MLCM: Multi-Label Confusion Matrix,” IEEE Access, vol. 10, pp. 19083–19095, 2022, doi: 10.1109/ACCESS.2022.3151048.
L.-E. Pomme, R. Bourqui, R. Giot, and D. Auber, “Relative Confusion Matrix: Efficient Comparison of Decision Models,” in 2022 26th International Conference Information Visualisation (IV), IEEE, Jul. 2022, pp. 98–103. doi: 10.1109/IV56949.2022.00025.
DOI: http://dx.doi.org/10.24014/coreit.v11i2.33174
Refbacks
- There are currently no refbacks.
| | |
| Jurnal CoreIT by http://ejournal.uin-suska.ac.id/index.php/coreit/ is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. | ||
