Phishing Detection in Deep Learning: Systematic Literature Review
Abstract
Keywords
Full Text:
PDFReferences
N. Altwaijry, I. Al-Turaiki, R. Alotaibi, and F. Alakeel, “Advancing Phishing Email Detection: A Comparative Study of Deep Learning Models,” Sensors, vol. 24, no. 7, p. 2077, Mar. 2024, doi: 10.3390/s24072077.
O. K. Sahingoz, E. BUBEr, and E. Kugu, “DEPHIDES: Deep Learning Based Phishing Detection System,” IEEE Access, vol. 12, pp. 8052–8070, 2024, doi: 10.1109/ACCESS.2024.3352629.
R. Brindha, S. Nandagopal, H. Azath, V. Sathana, G. Prasad Joshi, and S. Won Kim, “Intelligent Deep Learning Based Cybersecurity Phishing Email Detection and Classification,” Comput. Mater. Contin., vol. 74, no. 3, pp. 5901–5914, 2023, doi: 10.32604/cmc.2023.030784.
M. K. Prabakaran, P. Meenakshi Sundaram, and A. D. Chandrasekar, “An enhanced deep learning‐based phishing detection mechanism to effectively identify malicious URLs using variational autoencoders,” IET Inf. Secur., vol. 17, no. 3, pp. 423–440, May 2023, doi: 10.1049/ise2.12106.
K. Thakur, M. L. Ali, M. A. Obaidat, and A. Kamruzzaman, “A Systematic Review on Deep-Learning-Based Phishing Email Detection,” Electronics, vol. 12, no. 21, p. 4545, Nov. 2023, doi: 10.3390/electronics12214545.
N. Q. Do, A. Selamat, O. Krejcar, E. Herrera-Viedma, and H. Fujita, “Deep Learning for Phishing Detection: Taxonomy, Current Challenges and Future Directions,” IEEE Access, vol. 10, pp. 36429–36463, 2022, doi: 10.1109/ACCESS.2022.3151903.
C. Catal, G. Giray, B. Tekinerdogan, S. Kumar, and S. Shukla, “Applications of deep learning for phishing detection: a systematic literature review,” Knowl. Inf. Syst., vol. 64, no. 6, pp. 1457–1500, Jun. 2022, doi: 10.1007/s10115-022-01672-x.
B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman, “Systematic literature reviews in software engineering – A systematic literature review,” Inf. Softw. Technol., vol. 51, no. 1, pp. 7–15, Jan. 2009, doi: 10.1016/j.infsof.2008.09.009.
S. Wang, S. Khan, C. Xu, S. Nazir, and A. Hafeez, “Deep Learning-Based Efficient Model Development for Phishing Detection Using Random Forest and BLSTM Classifiers,” Complexity, vol. 2020, pp. 1–7, Sep. 2020, doi: 10.1155/2020/8694796.
M. Somesha, A. R. Pais, R. S. Rao, and V. S. Rathour, “Efficient deep learning techniques for the detection of phishing websites,” Sādhanā, vol. 45, no. 1, p. 165, Dec. 2020, doi: 10.1007/s12046-020-01392-4.
T. Rasymas and L. Dovydaitis, “Detection of phishing URLs by using deep learning approach and multiple features combinations,” Balt. J. Mod. Comput., vol. 8, no. 3, pp. 471–483, 2020, doi: 10.22364/BJMC.2020.8.3.06.
J. Feng, L. yang Zou, O. Ye, and J. zhou Han, “Web2Vec: Phishing Webpage Detection Method Based on Multidimensional Features Driven by Deep Learning,” IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS.2020.3043188.
A. Al-Alyan and S. Al-Ahmadi, “Robust URL phishing detection based on deep learning,” KSII Trans. Internet Inf. Syst., vol. 14, no. 7, pp. 2752–2768, 2020, doi: 10.3837/tiis.2020.07.001.
M. A. Adebowale, K. T. Lwin, and M. A. Hossain, “Intelligent phishing detection scheme using deep learning algorithms,” J. Enterp. Inf. Manag., vol. ahead-of-p, no. ahead-of-print, Jun. 2020, doi: 10.1108/JEIM-01-2020-0036.
R. Yang, K. Zheng, B. Wu, C. Wu, and X. Wang, “Phishing Website Detection Based on Deep Convolutional Neural Network and Random Forest Ensemble Learning,” Sensors, vol. 21, no. 24, p. 8281, Dec. 2021, doi: 10.3390/s21248281.
S. M. Alzahrani, “Phishing Attack Detection Using Deep Learning,” Int. J. Comput. Sci. Netw. Secur., vol. 21, no. 12, pp. 213–218, Dec. 2021, doi: 10.22937/IJCSNS.2021.21.12.31.
L. Tang and Q. H. Mahmoud, “A Deep Learning-Based Framework for Phishing Website Detection,” IEEE Access, vol. 10, pp. 1509–1521, 2022, doi: 10.1109/ACCESS.2021.3137636.
H. Shaiba, J. S. Alzahrani, M. M. Eltahir, R. Marzouk, H. Mohsen, and M. Ahmed Hamza, “Hunger Search Optimization with Hybrid Deep Learning Enabled Phishing Detection and Classification Model,” Comput. Mater. Contin., vol. 73, no. 3, pp. 6425–6441, 2022, doi: 10.32604/cmc.2022.031625.
Y. Ogawa, T. Kimura, and J. Cheng, “Deep-learning-based sequential phishing detection,” IEICE Commun. Express, vol. 11, no. 4, pp. 171–175, Apr. 2022, doi: 10.1587/comex.2021XBL0212.
M. Korkmaz, E. Kocyigit, O. K. Sahingoz, and B. Diri, “A Hybrid Phishing Detection System Using Deep Learning-based URL and Content Analysis,” Elektron. Ir Elektrotechnika, vol. 28, no. 5, pp. 80–89, Oct. 2022, doi: 10.5755/j02.eie.31197.
M. Elsadig et al., “Intelligent Deep Machine Learning Cyber Phishing URL Detection Based on BERT Features Extraction,” Electronics, vol. 11, no. 22, p. 3647, Nov. 2022, doi: 10.3390/electronics11223647.
S.-J. Bu and H.-J. Kim, “Optimized URL Feature Selection Based on Genetic-Algorithm-Embedded Deep Learning for Phishing Website Detection,” Electronics, vol. 11, no. 7, p. 1090, Mar. 2022.
M. Almousa, T. Zhang, A. Sarrafzadeh, and M. Anwar, “Phishing website detection: How effective are deep learning-based models and hyperparameter optimization?,” Secur. Priv., vol. 5, no. 6, p. e256, Nov. 2022, doi: 10.1002/spy2.256.
E. Benavides-Astudillo, W. Fuertes, S. Sanchez-Gordon, D. Nuñez-Agurto, and G. Rodríguez-Galán, “A Phishing-Attack-Detection Model Using Natural Language Processing and Deep Learning,” Appl. Sci., vol. 13, no. 9, p. 5275, Apr. 2023, doi: 10.3390/app13095275.
Z. Alshingiti, R. Alaqel, J. Al-Muhtadi, Q. E. U. Haq, K. Saleem, and M. H. Faheem, “A Deep Learning-Based Phishing Detection System Using CNN, LSTM, and LSTM-CNN,” Electronics, vol. 12, no. 1, p. 232, Jan. 2023, doi: 10.3390/electronics12010232.
E. A. Aldakheel, M. Zakariah, G. A. Gashgari, F. A. Almarshad, and A. I. A. Alzahrani, “A Deep Learning-Based Innovative Technique for Phishing Detection in Modern Security with Uniform Resource Locators,” Sensors, vol. 23, no. 9, p. 4403, Apr. 2023, doi: 10.3390/s23094403.
M. Abdullah Alohali et al., “Metaheuristics with deep learning driven phishing detection for sustainable and secure environment,” Sustain. Energy Technol. Assess., vol. 56, p. 103114, Mar. 2023, doi: 10.1016/j.seta.2023.103114.
S. Atawneh and H. Aljehani, “Phishing Email Detection Model Using Deep Learning,” Electronics, vol. 12, no. 20, p. 4261, Oct. 2023, doi: 10.3390/electronics12204261.
F. S. Alsubaei, A. A. Almazroi, and N. Ayub, “Enhancing Phishing Detection: A Novel Hybrid Deep Learning Framework for Cybercrime Forensics,” IEEE Access, vol. 12, pp. 8373–8389, 2024, doi: 10.1109/ACCESS.2024.3351946.
DOI: http://dx.doi.org/10.24014/coreit.v10i1.31009
Refbacks
- There are currently no refbacks.
Jurnal CoreIT by http://ejournal.uin-suska.ac.id/index.php/coreit/ is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. |