Review of Original Differential Evolution Algorithm: Research Trends, Original Setting Parameters
Abstract
Abstract: Differential Evolution (DE) has emerged as a widely embraced optimization algorithm, consistently showcasing robust performance in the IEEE Congress on Evolutionary Computation (CEC) competitions.
Purpose: This study aims to pinpoint key regulatory parameters and manage the evolution of DE parameters. We conduct an exhaustive literature review spanning from 2010 to 2021 to identify and analyze evolving trends, parameter settings, and ensemble methods associated with original differential evolution.
Method: Our meticulous investigation encompasses 1,210 publications, comprising 543 from ScienceDirect, 12 from IEEE Xplore, 424 from Springer, and 231 from WoS. Through an initial screening process involving title and abstract skimming to identify relevant subsets and eliminate duplicate entries, we excluded 762 articles from full-text scrutiny, resulting in 358 articles for in-depth analysis.
Findings: Our findings reveal a consistent utilization of tuning parameters, self-adaptive mechanisms, and ensemble methods in the final collection. These results deepen our understanding of DE's success in CEC competitions.
Value: offer valuable insights for future research and algorithm development in optimization fields.
Keywords
Full Text:
PDFReferences
J. Brest, S. Greiner, B. Bošković, M. Mernik, and V. Zumer, “Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems,” IEEE Trans. Evol. Comput., vol. 10, no. 6, pp. 646–657, 2006, doi: 10.1109/TEVC.2006.872133.
S. M. Elsayed, R. A. Sarker, and D. L. Essam, “A new genetic algorithm for solving optimization problems,” Eng. Appl. Artif. Intell., vol. 27, pp. 57–69, 2014, doi: 10.1016/j.engappai.2013.09.013.
A. P. Piotrowski, “Adaptive memetic differential evolution with global and local neighborhood-based mutation operators,” Inf. Sci. (Ny)., vol. 241, pp. 164–194, 2013, doi: 10.1016/j.ins.2013.03.060.
A. H. Kashan, “An effective algorithm for constrained optimization based on optics inspired optimization (OIO),” Comput. Des., vol. 63, pp. 52–71, 2015, doi: http://dx.doi.org/10.1016/j.cad.2014.12.007.
Y. Cai and J. Wang, “Differential evolution with hybrid linkage crossover,” Inf. Sci. (Ny)., vol. 320, pp. 244–287, 2015, doi: 10.1016/j.ins.2015.05.026.
S. M. Elsayed, R. A. Sarker, and D. L. Essam, “Training and testing a self-adaptive multi-operator evolutionary algorithm for constrained optimization,” Appl. Soft Comput. J., vol. 26, pp. 515–522, 2015, doi: 10.1016/j.asoc.2014.10.011.
S. Wang, Y. Li, and H. Yang, “Self-adaptive mutation differential evolution algorithm based on particle swarm optimization,” Appl. Soft Comput. J., vol. 81, Aug. 2019, doi: 10.1016/j.asoc.2019.105496.
R. Mallipeddi and M. Lee, “An evolving surrogate model-based differential evolution algorithm,” Appl. Soft Comput. J., vol. 34, pp. 770–787, Jun. 2015, doi: 10.1016/j.asoc.2015.06.010.
G. Wu, R. Mallipeddi, P. N. Suganthan, R. Wang, and H. Chen, “Differential evolution with multi-population based ensemble of mutation strategies,” Inf. Sci. (Ny)., vol. 329, pp. 329–345, Feb. 2016, doi: 10.1016/j.ins.2015.09.009.
S. Z. Zhao and P. N. Suganthan, “Empirical investigations into the exponential crossover of differential evolutions,” Swarm Evol. Comput., vol. 9, pp. 27–36, 2013, doi: 10.1016/j.swevo.2012.09.004.
S. L. Wang, F. Morsidi, T. F. Ng, H. Budiman, and S. C. Neoh, “Insights into the effects of control parameters and mutation strategy on self-adaptive ensemble-based differential evolution,” Inf. Sci. (Ny)., vol. 514, pp. 203–233, Apr. 2020, doi: 10.1016/j.ins.2019.11.046.
H. Budiman, S. Li Wang, F. Morsidi, T. Foo Ng, and S. Chin Neoh, “Self-Adaptive Ensemble-based Differential Evolution with Enhanced Population Sizing,” 2020 2nd Int. Conf. Cybern. Intell. Syst. ICORIS 2020, Oct. 2020, doi: 10.1109/ICORIS50180.2020.9320767.
P. N. Suganthan, S. Das, S. Subhra Mullick, and P. N. Suganthan, “Recent Advances in Differential Evolution-An Updated Survey,” Elsevier, vol. 27, pp. 1–30, Apr. 2016, doi: 10.1016/j.swevo.2016.01.004.
S. Das, S. S. Mullick, and P. N. Suganthan, “Recent advances in differential evolution-An updated survey,” Swarm Evol. Comput., vol. 27, pp. 1–30, Apr. 2016, doi: 10.1016/j.swevo.2016.01.004.
W. Zhu, Y. Tang, J. A. Fang, and W. Zhang, “Adaptive population tuning scheme for differential evolution,” Inf. Sci. (Ny)., vol. 223, pp. 164–191, Feb. 2013, doi: 10.1016/j.ins.2012.09.019.
S. Mahdavi, M. E. Shiri, and S. Rahnamayan, “Metaheuristics in large-scale global continues optimization: A survey,” Inf. Sci. (Ny)., vol. 295, pp. 407–428, Feb. 2015, doi: 10.1016/j.ins.2014.10.042.
R. Mallipeddi and P. N. Suganthan, “Ensemble differential evolution algorithm for CEC2011 problems,” 2011 IEEE Congr. Evol. Comput. CEC 2011, pp. 1557–1564, 2011, doi: 10.1109/CEC.2011.5949801.
N. A. Jamil, S. L. Wang, and T. F. Ng, “Self-adaptive differential evolution based on best and mean schemes,” in Proceedings - 5th IEEE International Conference on Control System, Computing and Engineering, ICCSCE 2015, Institute of Electrical and Electronics Engineers Inc., May 2016, pp. 287–292. doi: 10.1109/ICCSCE.2015.7482199.
R. Mallipeddi, P. N. Suganthan, Q. K. Pan, and M. F. Tasgetiren, “Differential evolution algorithm with ensemble of parameters and mutation strategies,” Appl. Soft Comput. J., vol. 11, no. 2, pp. 1679–1696, 2011, doi: 10.1016/j.asoc.2010.04.024.
H. Budiman, S. L. Wang, F. Morsidi, T. F. Ng, and S. C. Neoh, “Self-Adaptive Ensemble-based Differential Evolution with Enhanced Population Sizing,” in 2020 2nd International Conference on Cybernetics and Intelligent System (ICORIS), IEEE, 2020. Accessed: Sep. 30, 2021. [Online]. Available: https://ieeexplore.ieee.org/document/9320767/
B. Chen, H. Ouyang, S. Li, and W. Ding, “Dual-Stage Self-Adaptive Differential Evolution with Complementary and Ensemble Mutation Strategies for Solving Global Optimization Problems,” Available SSRN 4637755, [Online]. Available: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4637755
R. Storn and K. Price, “Differential evolution-a simple efficient adaptive scheme for global optimization,” 1995.
R. Mallipeddi, G. Iacca, P. N. Suganthan, F. Neri, and E. Mininno, “Ensemble strategies in Compact Differential Evolution,” in 2011 IEEE Congress of Evolutionary Computation, CEC 2011, 2011, pp. 1972–1977. doi: 10.1109/CEC.2011.5949857.
Y. Zhou, J. Wang, Y. Zhou, Z. Qiu, Z. Bi, and Y. Cai, “Differential evolution with guiding archive for global numerical optimization,” Appl. Soft Comput. J., vol. 43, pp. 424–440, 2016, doi: 10.1016/j.asoc.2016.02.011.
Y. Cai and J. Wang, “Differential evolution with hybrid linkage crossover,” Inf. Sci. (Ny)., vol. 320, pp. 244–287, Nov. 2015, doi: 10.1016/j.ins.2015.05.026.
D. Yazdani, B. Nasiri, A. Sepas-Moghaddam, M. Meybodi, and M. Akbarzadeh-Totonchi, “mNAFSA: A novel approach for optimization in dynamic environments with global changes,” Swarm Evol. Comput., vol. 18, pp. 38–53, 2014, doi: http://dx.doi.org/10.1016/j.swevo.2014.05.002.
D. Kiran, B. K. Panigrahi, S. Das, and N. Kumar, “Linkage based deferred acceptance optimization,” Inf. Sci. (Ny)., vol. 349–350, pp. 65–76, 2016, doi: http://dx.doi.org/10.1016/j.ins.2016.02.006.
R. Mallipeddi, S. Jeyadevi, P. N. Suganthan, and S. Baskar, “Efficient constraint handling for optimal reactive power dispatch problems,” Swarm Evol. Comput., vol. 5, pp. 28–36, 2012, doi: 10.1016/j.swevo.2012.03.001.
E. Li and H. Wang, “An alternative adaptive differential evolutionary Algorithm assisted by Expected Improvement criterion and cut-HDMR expansion and its application in time-based sheet forming design,” Adv. Eng. Softw., vol. 97, pp. 96–107, 2016, doi: 10.1016/j.advengsoft.2016.03.001.
M. Han, C. Liu, and J. Xing, “An evolutionary membrane algorithm for global numerical optimization problems,” Inf. Sci. (Ny)., vol. 276, pp. 219–241, 2014, doi: http://dx.doi.org/10.1016/j.ins.2014.02.057.
R. Mallipeddi, G. Iacca, P. N. Suganthan, F. Neri, and E. Mininno, “Ensemble strategies in Compact Differential Evolution,” 2011 IEEE Congr. Evol. Comput. CEC 2011, pp. 1972–1977, 2011, doi: 10.1109/CEC.2011.5949857.
Z. Zhao, J. Yang, Z. Hu, and H. Che, “A differential evolution algorithm with self-adaptive strategy and control parameters based on symmetric Latin hypercube design for unconstrained optimization problems,” Eur. J. Oper. Res., vol. 250, no. 1, pp. 30–45, 2016, doi: 10.1016/j.ejor.2015.10.043.
X. Lu, K. Tang, B. Sendhoff, and X. Yao, “A new self-adaptation scheme for differential evolution,” Neurocomputing, vol. 146, pp. 2–16, 2014, doi: http://dx.doi.org/10.1016/j.neucom.2014.04.071.
G. Li et al., “A novel hybrid differential evolution algorithm with modified CoDE and JADE,” Appl. Soft Comput. J., vol. 47, pp. 577–599, 2016, doi: 10.1016/j.asoc.2016.06.011.
L. Cui, G. Li, Q. Lin, J. Chen, and N. Lu, “Adaptive differential evolution algorithm with novel mutation strategies in multiple sub-populations,” Comput. Oper. Res., vol. 67, pp. 155–173, 2016, doi: 10.1016/j.cor.2015.09.006.
S. Das, R. Mallipeddi, and D. Maity, “Adaptive evolutionary programming with p-best mutation strategy,” Swarm Evol. Comput., vol. 9, pp. 58–68, Apr. 2013, doi: 10.1016/j.swevo.2012.11.002.
M. Lin, Z. Wang, and W. Zheng, “Hybrid particle swarm-differential evolution algorithm and its engineering applications,” Soft Comput., 2023, doi: 10.1007/s00500-023-09025-8.
S. L. Wang, S. H. Adnan, H. Ibrahim, T. F. Ng, and P. Rajendran, “A Hybrid of Fully Informed Particle Swarm and Self-Adaptive Differential Evolution for Global Optimization,” Applied Sciences. mdpi.com, 2022. [Online]. Available: https://www.mdpi.com/2076-3417/12/22/11367
E. Song and H. Li, “A hybrid differential evolution for multi-objective optimisation problems,” Conn. Sci., 2022, doi: 10.1080/09540091.2021.1984396.
J. Brest et al., “Self-adaptive differential evolution with global neighborhood search,” Appl. Soft Comput., vol. 36, no. 6, pp. 71–78, 2015, doi: 10.1016/j.asoc.2015.07.021.
A. O. Kusakci and M. Can, “An adaptive penalty based covariance matrix adaptation-evolution strategy,” Comput. Oper. Res., vol. 40, no. 10, pp. 2398–2417, 2013, doi: 10.1016/j.cor.2013.03.013.
Y. Xue, S. Zhong, Y. Zhuang, and B. Xu, “An ensemble algorithm with self-adaptive learning techniques for high-dimensional numerical optimization,” Appl. Math. Comput., vol. 231, pp. 329–346, 2014, doi: 10.1016/j.amc.2013.12.130.
H. Liu, Z. Cai, and Y. Wang, “Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization,” Appl. Soft Comput. J., vol. 10, no. 2, pp. 629–640, 2010, doi: 10.1016/j.asoc.2009.08.031.
S. Rahnamayan, G. G. Wang, and M. Ventresca, “An intuitive distance-based explanation of opposition-based sampling,” Appl. Soft Comput. J., vol. 12, no. 9, pp. 2828–2839, Sep. 2012, doi: 10.1016/j.asoc.2012.03.034.
J. S. Tran, D. E. Schiavazzi, A. B. Ramachandra, A. M. Kahn, and A. L. Marsden, “Automated tuning for parameter identification and uncertainty quantification in multi-scale coronary simulations,” Comput. Fluids, vol. 142, pp. 128–138, Jan. 2017, doi: 10.1016/j.compfluid.2016.05.015.
Y. Zhang, K. Liu, L. Qin, and X. An, “Deterministic and probabilistic interval prediction for short-term wind power generation based on variational mode decomposition and machine learning methods,” Energy Convers. Manag., vol. 112, pp. 208–219, Mar. 2016, doi: 10.1016/j.enconman.2016.01.023.
S. Ikeda and R. Ooka, “Metaheuristic optimization methods for a comprehensive operating schedule of battery, thermal energy storage, and heat source in a building energy system,” Appl. Energy, vol. 151, pp. 192–205, 2015, doi: http://dx.doi.org/10.1016/j.apenergy.2015.04.029.
L. Chen, S. Zhao, W. Zhu, Y. Liu, and W. Zhang, “A Self-Adaptive Differential Evolution Algorithm for Parameters Identification of Stochastic Genetic Regulatory Networks with Random Delays,” Arab. J. Sci. Eng., vol. 39, no. 2, pp. 821–835, 2014, doi: 10.1007/s13369-013-0803-y.
S. Das, S. S. Mullick, and P. N. Suganthan, “Recent advances in differential evolution – An updated survey,” Swarm Evol. Comput., vol. 27, pp. 1–30, 2016, doi: 10.1016/j.swevo.2016.01.004.
A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution algorithm with strategy adaptation for global numerical optimization,” IEEE Trans. Evol. Comput., vol. 13, no. 2, pp. 398–417, 2009, doi: 10.1109/TEVC.2008.927706.
G. Wu, X. Shen, H. Li, H. Chen, A. Lin, and P. N. Suganthan, “Ensemble of differential evolution variants,” Inf. Sci. (Ny)., vol. 423, pp. 172–186, 2018, doi: 10.1016/j.ins.2017.09.053.
L. D. Arya, P. Singh, and L. S. Titare, “Optimum load shedding based on sensitivity to enhance static voltage stability using DE,” Swarm Evol. Comput., vol. 6, pp. 25–38, 2012, doi: 10.1016/j.swevo.2012.06.002.
L. Thu, V. T. Vu, T. Thu, and H. Dinh, “Data & Knowledge Engineering A novel evolutionary multi-objective ensemble learning approach for forecasting currency exchange rates,” Data Knowl. Eng., no. January, pp. 1–27, 2017, doi: 10.1016/j.datak.2017.07.001.
R. Mallipeddi and P. N. Suganthan, “Differential evolution algorithm with ensemble of parameters and mutation and crossover strategies,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2010, pp. 71–78. doi: 10.1007/978-3-642-17563-3_9.
A. Zamuda and J. Brest, “Self-adaptive control parameters’ randomization frequency and propagations in differential evolution,” Swarm Evol. Comput., vol. 25, pp. 72–99, Dec. 2015, doi: 10.1016/j.swevo.2015.10.007.
A. Ekbal and S. Saha, “A multiobjective simulated annealing approach for classifier ensemble: Named entity recognition in Indian languages as case studies,” Expert Syst. Appl., vol. 38, no. 12, pp. 14760–14772, 2011, doi: 10.1016/j.eswa.2011.05.004.
A. Ekbal, S. Saha, and U. K. Sikdar, “Multiobjective Optimization for Biomedical Named Entity Recognition and Classification,” Procedia Technol., vol. 6, no. 0, pp. 206–213, 2012, doi: http://dx.doi.org/10.1016/j.protcy.2012.10.025.
H. Besma and T. Hichem, “Auto-Diversified Ameliorated MultiPopulation-Based Ensemble Differential Evolution,” … Symp. Model. Implement. …, 2022, doi: 10.1007/978-3-031-18516-8_13.
X. Zhu, C. Ye, L. He, H. Zhu, T. Chi, and J. Hu, “Ensemble of differential evolution and gaining–sharing knowledge with exchange of individuals chosen based on fitness and lifetime,” Soft Comput., 2023, doi: 10.1007/s00500-023-08580-4.
DOI: http://dx.doi.org/10.24014/coreit.v10i2.29903
Refbacks
- There are currently no refbacks.
Jurnal CoreIT by http://ejournal.uin-suska.ac.id/index.php/coreit/ is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. |