Feature Selection using Information Gain on the K-Nearest Neighbor (KNN) and Modified K-Nearest Neighbor (MKNN) Methods for Chronic Kidney Disease Classification
Abstract
Purpose: Kidneys has an important role in the human excretory system. Unhealthy kidneys can affect kidney function. It is important to know the symptoms of chronic kidney disease. One data mining technique that can be applied is the classification technique to determine whether a person has chronic kidney disease or not based on the symptoms (attributes) obtained from medical records. The symptoms of chronic kidney disease obtained amount to 24 symptoms or attributes,
Methods/Study design/approach: In this research, the classification of chronic kidney disease is performed using the information gain feature selection method and the KNN and MKNN classification methods. The number of data used is 400 data with 2 classes, namely chronic kidney disease (CKD) and non-chronic kidney disease (non-CKD).
Result/Findings: Based on the test results, it was found that the hemo (Hemoglobin) attribute has the highest information gain value, which is 0.6255. The best accuracy for the KNN classification method is 96.61%, and for the MKNN method, it is 98%.
Novelty/Originality/Value: The purpose of information gain feature selection is to choose features or attributes that significantly influence chronic kidney disease.
Keywords: Chronic Kidney Disease, Information Gain, KNN, MKNN
Full Text:
PDFReferences
REFERENCES
Harmayani and L. Sitorus, “Diagnosa Penyakit Ginjal Kronis Menggunakan Metode Klasifikasi Naïve Bayes,” J. MEDIA Inform. BUDIDARMA, vol. 4, no. 3, pp. 850–854, 2020, doi: 10.30865/mib.v4i3.2292.
G. A. M. Pratama et al., “Diagnosis Penyakit Ginjal Kronis dengan Algoritma C4.5, K-Means dan BPSO,” J. Elektron. Ilmu Komput. Udayana, vol. 10, no. 4, pp. 371–381, 2022.
P. Studi and M. Informatika, “Perbandingan Metode Data Mining Svm dan Nn Untuk Klasifikasi Penyakit Ginjal Kronis,” J. PILAR Nusa Mandiri, vol. 14, no. 1, pp. 1–6, 2018.
M. R. Hasibuan and Marji, “Pemilihan Fitur dengan Information Gain untuk Klasifikasi Penyakit Gagal Ginjal menggunakan Metode Modified K-Nearest Neighbor ( MKNN ),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 11, pp. 10435–10443, 2019.
M. I. P. Putra, D. T. Murdiansyah, and A. Aditsania, “Implementasi Algoritma Modified K-Nearest Neighbor ( MKNN ) untuk Klasifikasi Penyakit Kanker Payudara,” E-proceeding Eng., vol. 6, no. 1, pp. 2431–2441, 2019.
M. R. Maulana and M. A. Al Karomi, “Information Gain untuk Mengetahui Pengaruh Atribut terhadap Klasifikasi Persetujuan Kredit,” J. Litbang Kota Pekalongan, vol. 9, 2015.
F. Y. Nabella, Y. A. Sari, and R. C. Wihandika, “Seleksi Fitur Information Gain Pada Klasifikasi Citra Makanan Menggunakan Hue Saturation Value dan Gray Level Co-Occurrence Matrix,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 2, 2019.
I. S. Bakti and Ivandari, “Model Prediksi Penyakit Diabetes Menggunakan Bayesian Classification dan Information Gain untuk Seleksi Fitur dan Adaptive Boosting untuk Pembobotan Data,” IC-Tech, vol. XI, no. 1, pp. 28–37, 2019.
S. I. Fernanda, D. E. Ratnawati, and P. P. Adikara, “Identifikasi Penyakit Diabetes Mellitus Menggunakan Metode Modified K- Nearest Neighbor ( MKNN ),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 1, no. 6, pp. 507–513, 2017.
S. Z. Hr, A. Aziz, and W. Harianto, “Optimasi algoritma k-nearest neighbor (knn) dengan normalisasi dan seleksi fitur untuk klasifikasi penyakit liver,” JATI (Jurnal Mhs. Tek. Inform., vol. 6, no. 2, pp. 439–445, 2022.
DOI: http://dx.doi.org/10.24014/coreit.v9i2.26834
Refbacks
- There are currently no refbacks.
Jurnal CoreIT by http://ejournal.uin-suska.ac.id/index.php/coreit/ is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. |