Segmentation of Mentoring Customer Characteristics Using the K-Means Method and Hierarchical Clustering for Customer Relationship Management (CRM)

Hanif Aristyo Rahadiyan

Abstract


In the next 10-20 years, it is expected that Indonesia will enter a demographic bonus era, where the population of productive age exceeds that of non-productive age. This presents an opportunity for startups in the field of education to prepare better human resources in Indonesia. With the recent Covid-19 pandemic, the government has implemented regulations that require online teaching and learning. Startups, such as Outstanding Youth Indonesia (OYI), play a role in bridging distance learning, leading to increased competition in the education sector. To stay competitive, OYI is implementing a customer relationship management (CRM) strategy, using consumer characteristic segmentation through the K-means method and hierarchical clustering. The study aims to test the consumer characteristic cluster results and provide CRM recommendations based on the segmentation results. The results of the study revealed that the K-Means method was more optimal, with a score of 0.657, compared to hierarchical clustering of 0.644. The clusters tested included categories, intended education, and types of scholarships. Three clusters were produced: cluster 1, dominated by high school/vocational high school students; cluster 2, mostly university students; and cluster 3, dominated by employees of government agencies. Cluster one had the largest silhouette coefficient. Based on the clustering, a strategy was generated for each cluster to improve CRM in OYI.

Full Text:

PDF

References


Afandi T, “Siaran Pers BONUS DEMOGRAFI 2030-2040: STRATEGI INDONESIA TERKAIT KETENAGAKERJAAN DAN PENDIDIKAN,” 2017.

N. Falikhah, “BONUS DEMOGRAFI PELUANG DAN TANTANGAN BAGI INDONESIA,” 2017. [Online]. Available: https://media.neliti.com/media/publications/48298-ID-

A. D. Savitri, F. Abdurrachman Bachtiar, and N. Y. Setiawan, “Segmentasi Pelanggan Menggunakan Metode K-Means Clustering Berdasarkan Model RFM Pada Klinik Kecantikan (Studi Kasus : Belle Crown Malang),” 2018. [Online]. Available: http://j-ptiik.ub.ac.id

G. Febrina Wulandari, “SEGMENTASI PELANGGAN MENGGUNAKAN ALGORITMA K- MEANS UNTUK CUSTOMER RELATIONSHIP MANAGEMENT (CRM) PADA HIJAB MIULAN,” 2014, Accessed: Oct. 26, 2021. [Online]. Available: http://eprints.dinus.ac.id/5543/

K. Auliasari et al., “Penerapan Algoritma K-Means untuk Segmentasi Konsumen Menggunakan R,” 2019.

S. N. Gama, I. Cholissodin, and M. T. Furqon, “Clustering Portal Jurnal Internasional Untuk Rekomendasi Publikasi Berdasarkan Kualitas Cluster Menggunakan Kernel K-Means,” Repository Jurnal Mahasiswa PTIIK Universitas Brawijaya, vol. 5, no. 1, 2014, [Online]. Available: https://www.researchgate.net/publication/343876684

D. Ayu, I. C. Dewi, and K. Pramita, “Analisis Perbandingan Metode Elbow dan Sillhouette pada Algoritma Clustering K-Medoids dalam Pengelompokan Produksi Kerajinan Bali,” 2019.

M. Anggara, H. Sujiani, and H. Nasution, “Pemilihan Distance Measure Pada K-Means Clustering Untuk Pengelompokkan Member Di Alvaro Fitness,” Jurnal Sistem dan Teknologi Informasi (JUSTIN), 2016.

P. M. Arini and R. A. Hendrawan, “KARAKTERISTIK PELANGGAN TELEPON

KABEL MENGGUNAKAN CLUSTERING SOM DAN K-MEANS UNTUK MENGURANGI KESALAHAN KLASIFIKASI PELANGGAN PERUSAHAAN TELEKOMUNIKASI (STUDI KASUS : PT. TELKOM MOJOKERTO),” 2013.

A. Chusyairi and P. Ramadar Noor Saputra, “Pengelompokan Data Puskesmas Banyuwangi Dalam Pemberian Imunisasi Menggunakan Metode K-Means Clustering,” Telematika, vol. 12, no. 2, pp. 139–148, Aug. 2019, doi: 10.35671/telematika.v12i2.848.

A. Muhidin, “ANALISA METODE HIERARCHICAL CLUSTERING DAN K-MEAN DENGAN MODEL LRFMP PADA SEGMENTASI PELANGGAN,” Jurnal SIGMA, vol. 7, 2017.

D. Widyadhana, R. B. Hastuti, I. Kharisudin, and F. Fauzi, “Perbandingan Analisis Klaster K- Means dan Average Linkage untuk Pengklasteran Kemiskinan di Provinsi Jawa Tengah,” PRISMA, Prosiding Seminar Nasional Matematika, vol. 4, pp. 584–594, 2021, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/

A. Burhan, H. Kiat, Y. Azhar, and V. Rahmayanti, “Penerapan Metode K-Means Dengan Metode Elbow Untuk Segmentasi Pelanggan Menggunakan Model RFM (Recency, Frequency & Monetary),” REPOSITOR, vol. 2, no. 7, pp. 945–952, 2020.

F. Wang, H. H. Franco-Penya, J. D. Kelleher, J. Pugh, and R. Ross, “An analysis of the application of simplified silhouette to the evaluation of k-means clustering validity,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2017, vol. 10358 LNAI, pp. 291–305. doi: 10.1007/978-3-319- 62416-7_21.

A. O. Carissa, “PENERAPAN CUSTOMER RELATIONSHIP MANAGEMENT (CRM) SEBAGAI UPAYA UNTUK MENINGKATKAN LOYALITAS PELANGGAN (Studi Kasus pada Bandung Sport Distro Malang) ANATASHA ONNA CARISSA,” Malang, 2013.




DOI: http://dx.doi.org/10.24014/coreit.v9i1.21567

Refbacks

  • There are currently no refbacks.




Creative Commons License  site stats  
Jurnal CoreIT by http://ejournal.uin-suska.ac.id/index.php/coreit/ is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.