Identification of an Individual's Iris Using Euclidean and Mahalanobis Diagrams

Novan Wijaya

Abstract


The purpose of this study is to compare Euclidean and Mahalanobis geometry as a means of identifying a person using their iris. Iris is the only biometric that is truly unique and is extremely difficult to perform, making it the single most important consideration in the improvement of system security. To obtain the desired results, namely preprocessing and feature extraction, various methods will be used in image processing. Methods like the Gaussian filter, the operator sobel, and thresholding will be used in the pengolahan. Utilize the United Moment Invariant method to extend the circle (UMI). For projects that use the method of comparing the strengths of FAR and GAR, a smaller FAR was obtained for the eulidean to mahalanobis ratio. Additionally, value distance mahalanobis is smaller compared to FAR for GAR penetration.

 Keywords: Gaussian Filter, Iris, Sobel Operator, United Moment Invariat


Full Text:

PDF

References


D. C. rini Novitasari, M. F. Rozi, and R. Veriani, “Klasifikasi Kelainan Pada Jantung Melalui Citra Iris Mata Menggunakan Fuzzy C-Means Sebagai Pengambil Fitur Iris Dan Klasifikasi Menggunakan Support Vector Machine,” INTEGER J. Inf. Technol., vol. 4, no. 1, pp. 1–10, 2019, doi: 10.31284/j.integer.2019.v4i1.489.

I. Agustian, F. Hadi, and M. K. A. Rosa, “Pre-Diagnosis Gangguan Ginjal Melalui Citra Iris Mata Menggunakan Raspberry PI Dengan Metode Convolutional Neural Network (CNN),” J. Amplif. J. Ilm. Bid. Tek. Elektro Dan Komput., vol. 9, no. 1, pp. 16–25, 2019, doi: 10.33369/jamplifier.v9i1.15396.

F. E. Alfian, I. G. P. S. Wijaya, and F. Bimantoro, “Identifikasi Iris Mata Menggunakan Metode Wavelet Daubechies dan K-Nearest Neighbor,” J. Teknol. Informasi, Komputer, dan Apl. (JTIKA ), vol. 2, no. 1, pp. 1–10, 2020, doi: 10.29303/jtika.v2i1.76.

K. Telaumbanua, P. Sirait, A. Rohana, and B. Gea, “Sistem Pengenalan Iris Mata Menggunakan Metode Wavelet Packets Decomposition dan Euclidean Distance,” J. SIFO Mikroskil, vol. 20, no. 2, pp. 105–116, 2019, [Online]. Available: https://www.mikroskil.ac.id/ejurnal/index.php/jsm/article/view/668.

I. A. Qasmieh, H. Alquran, and A. M. Alqud, “Occluded iris classification and segmentation using selfcustomized artificial intelligence models and iterative randomized Hough transform,” Int. J. Electr. Comput. Eng., vol. 11, no. 5, pp. 4037–4049, 2021, doi: 10.11591/ijece.v11i5.

M. Arsalan, R. A. Naqvi, D. S. Kim, P. H. Nguyen, M. Owais, and ang R. Park, “IrisDenseNet: Robust Iris Segmentation Using Densely Connected Fully Convolutional Networks in the Images by Visible Light and Near-Infrared Light Camera Sensors,” Sensors, vol. 18, no. 5, p. 1501, 2018, doi: 10.3390/s18051501.

H. A. D. Rani, “Perbandingan Metode Filtering Untuk Peningkatan Kualitas Citra Iris Mata Berbasis Image Processing,” JOINED J. INFORMATICS Educ., vol. 1, no. 1, pp. 10–16, 2018, doi: 10.31331/joined.v1i1.622.

N. Wijaya, H. Irsyad, and A. Taqwiym, “DESIGN VERIFICATION USING PALMPRINT,” TEKNOMATIKA, vol. 07, no. 02, pp. 36–46, 2017.

A. F. Amalia and H. Saputro, “Analisis deteksi iris mata menggunakan metode deteksi tepi sobel,” Sci. TECH J. Ilm. Ilmu Pengetah. dan Teknol., vol. 4, no. 1, pp. 41–48, 2018.

K. Fitria and L. Hakim, “Segmentasi Region Of Interest (ROI) Garis Telapak Tangan Menggunakan Deteksi Tepi Sobel,” Explor. IT! J. Keilmuan dan Apl. Tek. Inform., vol. 11, no. 1, pp. 29–40, 2019, doi: 10.35891/explorit.v11i1.1666.

B. O. Muhammed and S. M. Shamsuddin, “A multimodal biometric system using global features for identical twins identification,” J. Comput. Sci., vol. 14, no. 1, pp. 92–107, 2018, doi: 10.3844/jcssp.2018.92.107.

Y. Miftahuddin, S. Umaroh, and F. R. Karim, “Perbandingan Metode Perhitungan Jarak Euclidean, Haversine, Dan Manhattan Dalam Penentuan Posisi Karyawan,” J. Tekno Insentif, vol. 14, no. 2, pp. 69–77, 2020, doi: 10.36787/jti.v14i2.270.

M. Azizah, A. Hidayatno, and Y. Christyono, “APLIKASI PENGENAL PENGUCAP BERBASIS IDENTIFIKASI SUARA DENGAN EKSTRAKSI CIRI MEL-FREQUENCY CEPSTRUM COEFFICIENTS ( MFCC ) DAN KUANTISASI VEKTOR Mega Tiara Nur Azizah *) , Achmad Hidayatno , and Yuli Christyono Abstrak Pendahuluan Metode,” Transient, vol. 6, no. 4, pp. 639–643, 2017.

A. K. Khairuzzaman and S. Chaudhury, “Multilevel thresholding using grey wolf optimizer for image segmentation,” Expert Syst. Appl., 2017, doi: 10.1016/j.eswa.2017.04.029.

W. Zhou, X. Ma, and Y. Zhang, “Research on image preprocessing algorithm and deep learning of iris recognition,” J. Phys. Conf. Ser., vol. 1621, no. 1, p. 012008, 2020, doi: 10.1088/1742-6596/1621/1/012008.

K. Wardani, A. Kurniawan, and E. Mulyana, “ROI Based Post Image Quality Assessment Technique on Multiple Localized Filtering Method on Kinect Sensor,” in In 2018 12th International Conference on Telecommunication Systems, Services, and Applications (TSSA), 2018, pp. 1–4, doi: 10.1109/TSSA.2018.8708810.




DOI: http://dx.doi.org/10.24014/coreit.v9i1.18681

Refbacks

  • There are currently no refbacks.




Creative Commons License  site stats  
Jurnal CoreIT by http://ejournal.uin-suska.ac.id/index.php/coreit/ is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.