Mesin Rekomendasi Menggunakan Algoritma Alternating Least Square (ALS) pada Goodreads

Stanley Martin, Jay Idoan Sihotang, Bern Jonathan

Abstract


Sistem rekomendasi merupakan sistem yang dapat memberikan rekomendasi berupa prediksi rating pada suatu item. Ada banyak cara dalam merekomendasikan suatu item kepada pengguna, salah satunya adalah Alternating Least Square. Goodreads adalah situs web buku yang menjelaskan sinopsis dan memberi peringkat untuk buku, dan Goodreads membagikan peringkat pengguna mereka ke item di Kaggle untuk dianalisis. Oleh karena itu, penulis ingin merancang, mengimplementasikan, menguji serta ingin mengevaluasi mesin rekomendasi buku Goodreads mulai dari rating pengguna hingga item sebagai alternatif pemecahan masalah dari rekomendasi peringkat buku di Goodreads sekarang ini. Terdapat 981.756 data yang diolah menggunakan Alternating Least Square dengan 80% data latih dan 20% data uji. Hasil prediksi dievaluasi dengan Mean Absolute Error (MAE) dan Root Mean Square Error (RMSE). Hasil penelitian ini menunjukkan bahwa Root Mean Square Error 0.67 dan Mean Absolute Error 0.52 dan dapat dikatakan mesin yang dibuat memiliki error varians yang kecil karena memiliki kesalahan di bawah 1.00.


Full Text:

PDF

References


F. Ricci, L. Rokach and B. Shapira, "Recommender Systems: Introduction and Challenges," in Recommender systems handbook, Second edition, New York, Springer Science+Business Media, 2015, pp. 1-34.

P. B.Thorat, R. Goudar and S. Barve, "Survey on Collaborative Filtering, Content-based Filtering and Hybrid Recommendation System," International Journal of Computer Applications, pp. 31-36, 2015.

J. B. Schafer, D. Frankowski, S. Sen and J. Herlocker, "Collaborative Filtering Recommender Systems," Springer-Verlag Berlin Heidelberg, pp. 291-324, 2007.

M. Thelwall and K. Kousha, "Goodreads: A Social Network Site for Book Readers," Journal of the Association for Information Science and Technology, pp. 1-23, 2016.

I. S. Wahyudi, "Big Data Analytic untuk Pembuatan Rekomendasi Koleksi Film Personal Menggunakan Mlib Apache Spark," Berkala Ilmu Perpustakaan dan Informasi, vol. 14, pp. 11-25, 2018.

J. Fadlil and W. F. Mahmudy, "Pembuatan Sistem Rekomendasi Menggunakan Decision Tree dan Clustering," Kursor, vol. 3, pp. 45-66, 2007.

E. W. Wibowo, S. Rochimah and A. Munif, "Penerapan Algoritma Squeezer untuk Memberikan Rekomendasi Pilihan Lagu Berdasarkan Daftar Lagu yang Dimainkan pada Pemutar MP3 Android," Jurnal Teknik Pomits, vol. 2, pp. A-111 - A-116, 2013.

V. Kotu and B. Deshpande, "Collaborative Filtering," in Data Science: Concepts and Practice, Cambridge, Morgan Kaufmann Publishers, 2019, p. 353.

G. Linden, B. Smith and J. York, "Amazon.com Recommendations: Item-to-Item Collaborative Filtering," IEEE Internet Computing, pp. 76-80, 2003.

B. Sarwar, G. Karypis, J. Konstan and J. Riedl, "Item-based Collaborative Filtering Recommendation Algorithms," WWW '01: Proceedings of the 10th international conference on World Wide Web, pp. 285-295, 2001.

B. Schafer, J. Konstan and J. Riedl, "E-Commerce Recommendation Applications," Data Mining and Knowledge Discovery, pp. 115-153, 2001.

Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin and J. M. Hellerstein, "Distributed GraphLab: A Framework for Machine Learning in the Cloud," Proceedings of the VLDB Endowment (PVLDB), Vol. 5, pp. 716-727, 2012.

Y. Zhou, D. M. Wilkinson, R. Schreiber and R. Pan, "Large-Scale Parallel Collaborative Filtering for the Netflix Prize," in Algorithmic Aspects in Information and Management, 4th International Conference (AAIM), Shanghai, 2008.

Y. Koren, R. Bell and C. Volinsky, "Matrix Factorization Techniques for Recommender Systems," Computer, Vol. 42, pp. 30-37, 2009.

S. Schelter, C. Boden, M. Schenck and A. Alexandrov, "Distributed Matrix Factorization with MapReduce using a series of Broadcast-Joins," in The 7th ACM Conference on Recommender Systems,, New York, 2013.

R. Gemulla, E. Nijkamp, P. J. Haas and Y. Sismanis, "Large-scale matrix factorization with distributed stochastic gradient descent," in The 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, 2011.

B. M. Khan, A. Mansha, F. H. Khan and S. Bashir, "Collaborative Filtering based Online Recommendation Systems: A Survey," in International Conference on Information & Communication Technologies, Karachi, Pakistan, 2017.




DOI: http://dx.doi.org/10.24014/coreit.v6i2.11578

Refbacks

  • There are currently no refbacks.




Creative Commons License  site stats  
Jurnal CoreIT by http://ejournal.uin-suska.ac.id/index.php/coreit/ is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.