An Experimental Comparison of a Problem-Based Learning and a POE-Assisted Project-Based Learning Model of Teaching Scientific Literacy
Abstract
Although many previous studies are published to be some evidence of the effectiveness of inductive learning models, an experimental comparison of two inductive learning models of teaching scientific literacy remains unavailable. The purpose of this study, therefore, was to investigate 46 secondary students' scientific literacy through a comparison of problem-based learning and project-based learning that is assisted by using a predict-observe-explain strategy on thematic learning. A quasi-experimental method with alternative treatment (pretest and posttest) with nonequivalent groups design was used to assign students into the experimental and the comparison groups, respectively 25 students who had the POE-assisted project-based learning and 21 students who had the problem-based learning. The normalized change and an analysis of covariance with students' pretest scores as covariates were adopted for data analysis. The results revealed that the average normalized change score of both groups was 69±7 and 39±8, respectively high category for the experimental group and medium category for the comparison group. There were significant differences between both groups' improvement (F=8.356; p<0,006; and Cohens' ES d = 0,83). Thus, the implementation of POE-assisted project-based learning could further improve secondary students' scientific literacy than problem-based learning on thematic learning.
Keywords: inductive model, POE strategy, scientific literacyFull Text:
PDFReferences
Afriana, J., Permanasari, A., & Fitriani, A. (2016). Project based learning integrated to stem to enhance elementary school’s students scientific literacy. Jurnal Pendidikan IPA Indonesia, 5 (2), 261-267. doi: 10.15294/jpii.v5i2.549
Anim, A. Saragih, E. M. (2019). Difference of students’ mathematical communication skills through contextual teaching learning with problem-based learning model. Formatif: Jurnal Ilmiah Pendidikan MIPA, 9(1): 83-90. http://dx.doi.org/10.30998/formatif.v9i1.3186
Amundsen, D. S., Kirkemo, C.N., Nakkerud, A., Trømborg, J. & Vistnes, A.I. (2009). The rainbow as a student project involving numerical calculations. American Journal of Physics, 77(9), pp:795-798. doi: 10.1119/ 1.3152991
Arends, R.I. (2012). Learning to teach (9th eds.). New York: McGraw-Hill.
Barron, B., & Darling-Hammond, L. (2008). Teaching for meaningful learning: A review of research on inquiry-based and cooperative learning (PDF). In Powerful Learning: What We Know About Teaching for Understanding. San Francisco, CA: Jossey-Bass
Barry, R. (2008). Electric Motorboat Drag Racing: A hands-on physics project that motivates students from start to finish. The Physics Teacher 46, pp:267-268. doi: 10.1119/1.2909742
Baumert, J., & Köller, O. (1998). Interest research concerning secondary level I: An overview. InL. Hoffmann, A. Krapp, K. A. Renninger, & J. Baumert (Eds.), Interest and learning. Proceedings of the Seeon-conference on interest and gender (pp. 241–256). Kiel: Institut fuer die Paedagogik der Naturwissenschaften (IPN).
Beck, J. & Perkins, J. (2016). The “Finding Physics” Project: Recognizing and exploring physics outside the classroom. Phys. Teach. 54; pp: 466-468. doi: 10.1119/1.4965265
Berek, F. X., Sutopo, S., & Munzil, M. (2016). Enhancement of junior high school students’ concept comprehension in hydrostatic pressure and archimedes law concepts by predict-observe-explain strategy. Jurnal Pendidikan IPA Indonesia, 5(2), 230-238. doi:10.15294/jpii.v5i2.6038
Blumenfeld, P.C., Marx, R., Patrick, H., & Krajcik, J. (1996). Teaching for understanding. In Biddle, B.J., Good, T., & Goodson, I. F., (Eds.), International handbook of teachers and teaching. Dordrecht, The Netherlands: Kluwer Academic.
Bybee, R. & McCrae, B. (2011). Scientific literacy and student attitudes: Perspectives from PISA 2006 science. International Journal of Science Education, 33(1), pp. 7-26. doi:10.1080/ 09500693.2010.518644
Champagne, A. B., Klopfer, L. E., & Anderson, J. H. (1979). Factors influencing the learning of classical mechanics. Pittsburgh: University of Pittsburgh.
Chang, C. (2001). Comparing the impacts of a problem-based computer-assisted instruction and the direct-interactive teaching method on student science achievement. Journal of Science Education and Technology, 10 (2), 147-153. doi: 10.1023/A:1009469014218
Cheng, K. K., Thacker, B. A., Cardenas, R. L., & Crouch, C. (2004). Using an online homework system enhances students’ learning of physics concepts in an introductory physics course. American Journal of Physics,72 (11), 1447-1453. doi: 10.1119/1.1768555
Colley, K. (2008). Project-Based Science Instruction: A PRIMER. The Science Teacher,75(8). pp. 23-28. doi: 10.2505/3/tst08_075_08
Creswell, J. W. (2014). Research Design: Quantitative, Qualitative, and Mixed Methods Approaches. United Stated of America: SAGE Publications.
Daniels, Z. (2008). Entwicklung schulischer Interessen im Jugendalter [Development of student interest on secondary level]. Muenster: Waxmann.
Davis, S.L. & Buckendahl, C.W. (2011).Incorporating cognitive demand in credentialing examinations. In G. Schraw & D.R. Robinson (Eds) Assessment of Higher Order Thinking Skills (pp.327-359). North Carolina: IAP.
Dean, C. B., Hubbell, E. R., Pitler, H., & Stone, B. (2012). Classroom instruction that works: Research-based strategies for increasing student achievement (2nd ed.). Alexandria, VA: ASCD
Ding, L. & Beichner R. (2009). Approaches to data analysis of multiple-choice questions. Physics education research 5, 20103. doi: 10.1103/PhysRevSTPER.5.020103
Drechsela, B., Carstensena, C., & Prenzel, M. (2011). The role of content and context in pisa interest scales: a study of the embedded interest items in the pisa2006 science assessment. International Journal of Science Education, 33(1). pp. 73–95. doi: 10.1080/09500693.2010.518646
Gardner, P. L. (1985). Students’ interest in science and technology: An international overview. In M. Lehrke, L. Hoffmann, & P. L. Gardner (Eds.), Interests in science and technology education(pp. 15–34). Kiel: Institut fuer die Paedagogik der Naturwissenschaften (IPN).
Gunstone, R. F. & White, R. T. (1981). Understanding of gravity. Science Education, 65(3), 291–299. doi: 10.1002/sce.3730650308
Haeussler, P., & Hoffmann, L. (1998).Qualitative differences in student’s interestin physics andthe dependence on gender and age. In L. Hoffmann, A. Krapp, K.A. Renninger, & J.Baumert (Eds.), Interest and learning. Proceedings of theSeeon-conference on interest and gender(pp. 280–289). Kiel: Institut fuer die Paedagogik der Naturwissenschaften (IPN).
Hake, R. R. (1998). Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses. American Journal of Physics, 66 (1): 64-74. doi: 10.1119/1.18809
Hmelo-Silver, C.E. (2004). Problem-based learning: What and how do students learn? Educational Psychology Review, 16 (3): 235–266. doi: 10.1023/B:EDPR.0000034022.16470.f3
Imaningtyas, C.D., Karyanto, P., Nurmiyati,& Asriani, L. (2016). Penerapan e-module berbasis problem based learning untuk meningkatkan literasi sains dan mengurangi miskonsepsi pada materi ekologi siswa kelas XMIA 6 SMAN 1 Karanganom tahun pelajaran 2014/2015. BIOEDUKASI, 9(1), hal. 4-10.
Kala, N., Yaman, F. & Ayas, A. (2012). The effectiveness of predict–observe–explain technique in probing students’ understanding about acid–base chemistry: a case for the concepts of pH, pOH, and strength. International Journal of Science and Mathematics Education, 11(3). pp 555–574. doi: 10.1007/s10763-012-9354-z
Kay N. Drake & K. N., Long, D. (2009). Rebecca’s in the Dark: A comparative study of problem-based learning and direct instruction /experiential learning in two 4th-grade classrooms. Journal of Elementary Science Education, 21 (1), 1-16.
Krajcik, J. S., Czerniak, C., & Berger, C. (1999).Teaching children science: A project-based approach. Boston: McGraw Hill College.
Larmer, J. & Mergendoller, J.R. (2010). Seven essentials for project-based learning, Educational Leadership, 68(1), pp: 34-37.
Lawles, K. A., & Brown, S. W. (2015). Developing scientific literacy skills through interdisciplinary, technology-based global simulations: Global Ed2. The Curriculum Journal,pp 1-22. doi: 10.1080/ 09585176.2015.1009133
Liew, C. W. & Treagust, D. F. (1995). A predict-observe-explain teaching sequence for learning about students’ understanding of heat and expansion of liquids. Australian Science Teachers Journal, 41(1), 68–71.
Maloney, D.P., O’Kuma, T.L., Hieggelke, C.J.,& Van Heuvelen, A. (2001). Surveying students’ conceptual knowledge of electricity and magnetism. American Journal of Physics, 69(7), S12-S23. doi: 10.1119/1.1371296
Marshall, J. A., Pine, B. & Taylor, W.W.L. (2007). INSPIRE: A VLF Radio Project for High School Students. The Physics Teacher 45, pp:42-45. doi: 10.1119/ 1.2409509
Mergendoller, J. R., Maxwell, N. L., & Bellisimo, Y. (2006).The effectiveness of problem-based instruction: Acomparative study of instructional methods and student characteristics. Interdisciplinary Journal of Problem-Based Learning, 1 (2), 49-69. doi: 10.7771/1541-5015.1026
Mill, J. E. & Treagust, D.F. (2003). Engineering education – Is problem-based or project-based learning the answer? Australian Journal of Engineering Education.pp. 1-16. Online publication 2003-04.
Narjaikaew, P., Emarat, N., Arayathanitkul K. & Cowie, B. (2010). Magnetism teaching sequences based on an inductive approach for first-year thai university science students. Int J of Sci and Math Educ. 8: 891-910. doi: 10.1007/s10763-009-9191-x
National Research Council. (1996). National Science Education Standards. Washington, D.C.: National Academy Press.
Nomika, R., Hidayat, A., Koes, H. S., 2015. Pengaruh pembelajaran fisika model problem based learning (pbl) terhadap kemampuan literasi sains siswa ditinjau dari kemampuan awal. Prosiding Pertemuan Ilmiah XXIX HFI Jateng & DIY, Yogyakarta 25 April 2015.
Nurfitriyanti, M. (2016). Model pembelajaran Project Based Learning Terhadap Kemampuan Pemecahan Masalah Matematika. Formatif: Jurnal Ilmiah Pendidikan MIPA, 6(2): 149-160. http://dx.doi.org/10.30998/formatif.v6i2.950
OECD.(2003). Literacy skills for the world of tomorrow. Further resultsfrom pisa 2000. Paris: OECD.
OECD. (2010). PISA 2009 Results: What student know and can do. Student performance in mathematics, reading and science volume 1. Paris: OECD.
OECD. (2013). PISA 2015: Draft science framework. Paris: OECD.
OECD. (2014). PISA 2012Results: What student know and can do. Student performance in mathematics, reading and science volume 1. Paris: OECD.
OECD. (2016). PISA 2015 PISA: Resuls in Focus. Paris: OECD.
Osborne, J., Simon, S., & Collins, S. (2003). Attitudes towards science: A review of the literature and its implications. International Journal of Science Education, 25, 1049–1079. doi: 10.1080/ 0950069032000032199
Prince, M. & Felder, R. (2006). Inductive teaching and learning methods: Definitions, Comparisons, and Research bases. Journal of Engineering Education, 95(2) pp:123-138. doi: 10.1002/j.2168-9830.2006.tb00884.x
Prince, M. & Felder, R. (2007).The many faces of inductive teaching and learning. Journal of College Science Teaching. 36(5), 14-20. doi: 10.1.1.63.7316
Radcliffe, P.J. & Kumar, D. (2017). Is problem-based learning suitable for engineering? Australasian Journal of Engineering Education, 21(2), pp. 81-88. Doi: 10.1080/22054952.2017.1351131
Radovanović, J. & Sliško, J. (2013). Applying a predict–observe–explain sequence in teaching of buoyant force. Physics Education, 48(1), pp: 28-34. doi: 10.1088/0031-9120.
Raine, D. & Collett, J. (2003). Problem-based learning in astrophysics. Eur. J. Phys. 24, pp: S41–S46. doi: 10.1088/0143-0807/24/2/306
Redish, E. F. & Steinberg. R. N. (1999). Teaching Physics: Figuring out what Works. Phys.Today, 52(1).24-30. doi: 10.1063/1.882568
Regassa, L. B. & Morrison-shetlar, A. I. (2009). Student learning in a project-based molecular biology course. Journal of College Science Teaching July/Agustus. pp. 58-67.
Rios, J.M. (2002). Using POE centers. Science scope,25(8), pp: 26-29.
Rosa, N. M., Pujiati, A. (2016). Pengaruh model pembelajaran berbasis masalah terhadap kemampuan berpikir kritis dan kemampuan berpikir kreatif. Formatif: Jurnal Ilmiah Pendidikan MIPA, 6(3): 175-183. http://dx.doi.org/10.30998/ formatif. v6i3.990
Silver, H.F., Dewing, T.R. & Perini, M.J. (2012). The Core Six: Essential Strategies for Achieving Excellence with the Common Core. Alexandria, VA USA: ASCD.
Sriyansyah, S.P. & Azhari, D. (2017). Addressing an undergraduate research issue about normalized change for critical thinking test. Jurnal Pendidikan IPA Indonesia, 6 (1), 131-137. doi: 10.15294/ jpii.v6i1.9602
Strobel, J., & van Barneveld, A. (2009). When is PBL more effective? A meta-synthesis of meta-analysescomparing PBL to conventional classrooms. Interdisciplinary Journal of Problem-Based Learning, 3(1), 44-58. doi: 10.4236/ ce.2017.84051
Surahmadi, B. (2018). Peningkatan pemahaman konsep kelistrikan dan Kreativitas Peserta Didik Melalui Model Pembelajaran Pjbl-C (Project Based Learning Community). Formatif: Jurnal Ilmiah Pendidikan MIPA, 8(2): 81-90. http://dx.doi.org/10.30998/formatif.v8i2.2443
Taba, H., Durkin, M. C., Fraenkel, J. R., & McNaughton, A. H. (1971). A teachers’ handbook to elementary social studies: An inductive approach (2nd ed.). Reading, MA: Addison-Wesley.
Tao, P. & Gunstone, R. F. (1997). Conceptual change in science through collaborative learning at the computer. Oak Brook: Paper Presented at the National Association for Research in Science Teaching.
Taqwa, M. R. A., Rivaldo, L., Faizah, R. (2019). Problem based learning implementation to increase the students’ conceptual understanding of elasticity. Formatif: Jurnal Ilmiah Pendidikan MIPA, 9(2): 107-116. http://dx.doi.org/10.30998/ formatif.v9i2.3339
Thomas, J. W. (2000). A review of research on project-based learning. San Rafael, CA: Autodesk Foundation.
Treagust, D. F., Mthembu, Z., &Chandrasegaran, A. L. (2014). Evaluation of the predict-observe-explain instructional strategy to enhance students’ understanding of redox reactions. in “Learning with Understanding in the Chemistry Classroom,” edited by I. Devetak and S. A. Glazˇar (eds.).
Van Kampen, P., Banahan, C., Kelly, M., McLoughlin, E., & O’Leary, E. (2004). Teaching a single physics module through Problem Based Learning in a lecture-based curriculum. American Journal of Physics, 72(6), pp: 829-834. doi: 10.1119/ 1.1645280
White, R. T., Gunstone, R. F. (1992). Probing understanding. London: Farmer Press.
Wilhelm, J. (2014). Project-based instruction with future stem educators: an interdisciplinary approach. Journal of College Science Teaching, 43(4), pp. 80-90. doi: 10.2505/4/jcst14_043_04_80
Wilhelm, J., Walters, K., & Sherrod S. (2008). Project-based learning environments: Challenging pre-service teachers to act in the moment. The Journal of Educational Research, 101(4).220-233. doi: 10.3200/JOER.101.4.220-233
Wulandari, N. & Sholihin, H. (2015). Penerapan model Problem Based Learning (PBL) pada pembelajaran IPA terpadu untuk meningkatkan aspek sikap literasi sains siswa SMP. Prosiding SNIPS 2015, Bandung 8-9 Juni 2015.
DOI: http://dx.doi.org/10.24014/jnsi.v6i1.13279
Refbacks
- There are currently no refbacks.