ADDITIONAL MENU
Implementation of K-Medoids and FP-Growth Algorithms for Grouping and Product Offering Recommendations
Abstract
212 Mart Rambutan Street on Pekanbaru City is a company engaged in retail. Meeting the needs of consumers and making the right decision in determining the sales strategy is a must. One way to find out market conditions is to observe sales transaction data using data mining. The data mining method commonly used to analyze market basket (Market Basket Analysis) is the Association Rule. The Association Rule can provide product recommendations and promotions, so that the marketing strategy is more targeted and the items promoted are the customer's needs. At 212 Mart, the determination of product promotion is obtained from the analysis of sales transaction data reports, which are based on the most sold products and the expiration date. Often the product being promoted does not fit the customer's needs. The purpose of this study is to apply the K-Medoids algorithm for clustering on FP-Growth in producing product recommendation rules on a large number of datasets so that they can provide technical recommendations / new ways to the 212 Mart in determining product promotions. The results obtained are from the experiments the number of clusters 3 to 9 obtained optimal clusters of 3 clusters based on the validity test of the Davies Bouldin Index with a value of 0.678. With a minimum support value of 5% - 9% and a minimum value of 50% confidence, the result is that the Association Rule is found only in cluster 3 with 5 rules.
Keywords
Association Rule; K-Medoid; Mart
Full Text:
PDFReferences
Aguinis, Herman, Lura E. Forcum, dan Harry Joo. Using Market Basket Analysis in Management Research. Journal of Management. 2012; 39(7): 1799-1824.
Annie, Loraine Charlet, dan Ashok Kumar. Market Basket Analysis for a Supermarket based on Frequent Itemset Mining. International Journal of Computer Science. 2012; 5(9): 257-264.
Ansari, Zahid., dkk. Quantitative Evaluation of Performance and Validity Indices for Clustering the Web Navigational Sessions. World of Computer Science and Information Technology Journal (WCSIT). 2011; 1(5): 217-226.
Azhari, Anshori. Pendekatan Aturan Asosiasi Untuk Analisis Pergerakan Saham. Seminar Nasional Informatika. Yogyakarta. 2009; 1, 183-189.
Bhatia, Shveta K, V.S Dixit. A Propound Method for the Improvement of Cluster Quality. International Journal of Computer Science Issues. 2012; 9(4): 216-222.
Christidis, Konstantinos, Dimitris Apostolou, dan Gregoris Mentzas. Exploring Customer Preferences with Probabilistic Topics Models, 1-13.
Diwate Rahul B, Sahu Amit. Data Mining Techniques in Association Rule : A Review. International Journal of Computer Science and Information Technologies. 2014; 5(1): 227-229.
Erwin. Analisis Market Basket Dengan Algoritma Apriori dan FP-Growth. Jurnal Generic. 2009; 2(4): 26-30.
Fitria, Rizky, Warnia Nengsih, Dini Hidayatul Qudsi. Implementasi Algoritma FP-Growth Dalam Penentuan Pola Hubungan Kecelakaan Lalu Lintas. Jurnal Sistem Informasi. 2017; 13 (2): 118-124.
Ghuman, Sukhdev Singh. Clustering Techniques- A Review. International Journal of Computer Science and Mobile Computing. 2016; 5(5): 524-530.
Gupta, Savi, dan Roopal Mamtora. A Survey on Association Rule Mining in Market Basket Analysis. International Journal of Information and Computation Technology. 2014; 4(4): 409-414.
Kaur, Noor Kamal, Usvir Kaur, dan Dr Dheerendra Singh. K-Medoid Clustering Algorithm- A Review. International Journal of Computer Application and Technology. 2014; 1 (1): 42-45.
Liu, Xi, Xiumei Zhang, Xiyong Li, dan Zhengguang Sun. Research on Data Mining Clustering Algorithm in Cloud Computing Environments. BioTechnology An Indian Journal. 2014; 10(17): 9563-9566.
Kamila I, Khairunnisa U, Mustakim M. "Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokan Data Transaksi Bongkar Muat di Provinsi Riau". Jurnal Ilmiah Rekayasa dan Manajemen Sistem Informasi. Vol 5 No 1. pp: 119-125. 2019.
Mustakim, Della Maulina Herianda, Ahmad Ilham, Achmad Daeng GS, Folkes E. Laumal, Nuning Kurniasih, Akbar Iskandar, Gloria Manulangga, Ida Bagus Ary Indra Iswara, dan Robbi Rahim. Market Basket Analysis Using Apriori and FP-Growth for Analysis Consumer Expenditure Patterns at Berkah Mart in Pekanbaru Riau. Journal of Physics. 2018; 1114(1): 1-9.
Park, Hae-Sang, Jong-Seok Lee, dan Chi-Hyuck Jun. A K-means-like Algorithm for K-medoids Clustering and Its Performance. 2014.
Patel, Dhara, Ruchi Modi, dan Ketan Sarvakar. A Comparative Study of Clustering Data Mining: Techniques and Research Challenges. International Journal of Latest Technology in Engineering, Management & Applied Science. 2014; 3(9): 67-70.
Plasse, Marie, Ndeye Niang, Gilbert Saporta, Alexandre Villeminot, dan Laurent Leblond. Combined Use of Association Rules Mining and Clustering Methods to Find Relevant Links between Binary Rare Attributes in a Large Data Set. Computational Statistics & Data Analysis. 2007; 52(1): 596-613.
Rahayu, Gusni, dan Mustakim. Principal Component Analysis untuk Dimensi Reduksi Data Clustering Sebagai Pemetaan Persentase Sertifikasi Guru di Indonesia. Seminar Nasional Teknologi Informasi, Komunikasi dan Industri (SNTIKI). 2017; 9: 201-208.
Rani, Yogita, dan Dr Harish Rohil. A Study of Hierarchical Clustering Algorithm. International Journal of Information and Computation Technology. 2013; 3(11): 1225-1232.
Raval, Unnati R. Implementing & Improvisation of K-Means Clustering Algorithm. International Journal of Computer Science and Mobile Computing. 2016; 5(5): 191-203.
Sinthuja, M, Dr N Puviarasan, Dr P Aruna. Research of Improved FP-Growth (IFP) Algorithm in Association Rules Mining. National Conference on Internet of Things IOT. 2018; 4: 24-31.
Triyanto, Wiwit Agus, Vincent Suhartono, dan Himawan. Analisis Keranjang Belanja Menggunakan K-Medoids dan FP-Growth. Jurnal Pseudocode. 2014; 2(1): 129-142.
Velmurugan, Dr T. 2012. “Efficiency of K-Means and K-Medoids Algorithms for Clustering Arbitrary Data Points” 3: 7.
Vijayarani, Dr S, dan R Prasannalakshmi. Association Rule Generation in Data Streams Using FP-Growth and APRIORI MR Algorithms. International Journal of Innovative Research in Computer and Communication Engineering. 2015; 3(9): 8949-8956.
Wen-xiu, Xie, Qi Heng-nian, dan Huang Mei-li. Market Basket Analysis Based on Text Segmentation and Association Rule Mining. First International Conference on Networking and Distributed Computing. 2010. 309-313.
DOI: http://dx.doi.org/10.24014/ijaidm.v2i2.8326
Refbacks
- There are currently no refbacks.
Office and Secretariat:
Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau
Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942
Journal Indexing:
Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti | SINTA | Dimensions | ICI Index Copernicus
IJAIDM Stats