ADDITIONAL MENU
Sentiment Analysis Using Twitter Data Regarding BPJS Cost Increase and Its Effect on Health Sector Stock Prices
Abstract
News about the increase in BPJS that will increase 2x gives a variety of responses in the community. One of the social media that people use in responding is Twitter. This research is used to see people's sentiment on Twitter about BPJS tariff policies. In addition, the impact of this sentiment will also be seen on the price of health shares. The analysis used is descriptive analysis and inference analysis. Descriptive analysis is used to look at the general picture of community sentiment and inference analysis is used to see the impact of community sentiment on the price of health stocks, namely Indo Farma and Kimia Farma. The results of this study indicate that public sentiment towards rising BPJS is dominated by negative sentiment. And for the level of tendency that has been processed through binary logistic regression analysis shows that negative sentiment will make Kimia Farma shares will go down while positive sentiment will make Kimia Farma shares will go up. As for IndoFarma shares, positive and negative sentiments from IndoFarma shares will tend to fall.
Full Text:
PDFReferences
Agresti, Alan. Categorical Data Analysis. New York: Inc. John Wiley and Sons.2002.
Badan Penyelenggara Jaminan Sosial, BPJS Kesehatan, diakses pada Agustus 2019.
Dewi, Gusti Ayu,dan Diota P V. Investasi dan Pasar Modal Indonesia. Depok: PT Rajagrafindo Persada.2018
Ervita Kusuma Putri, T. S. Penerapan Text Mining Pada Sistem Klasifikasi Email Spam Menggunakan Naive
Bayes. Jurnal Sarjana Teknik Informatika. 2014
Hadi, Mulya. Twitter untuk Orang Awam. Palembang: Maxikom.2010
Hatice Burcu Eskici, N. A. A Text Mining Aplication on Monthly Price Developments Report. Central Bank Review. 2018
Jiawei Han, M.K. Data Mining Concepts and Tchinique third edition. Waltam:Elxevier.2012
Nisar, Tahir M, Man Yeung. Twitter as a tool for forecasting stock market movements: A short-window event study. The Journal of Finance and Data Science. Vol 4(2), 101-119.2018
Pang, B., & Lee, L. 2008. Opinion mining and sentiment analysis. Foundations and trends
in information retrieval, 2008, Vol. 2(1-2), 1-135.
Ranco G, Aleksovski D, Caldarelli G, Grčar M, Mozetič I. The Effects of Twitter Sentiment on Stock Price Returns. PLoS ONE. 2015. 10(9): e0138441.
Serda Selin Ozturk & Kursad Ciftci."A Sentiment Analysis of Twitter Content as a Predictor of Exchange Rate Movements," Review of Economic Analysis, Rimini Centre for Economic Analysis,2014 vol. 6(2), pages 132-140, December.
Shi, Yong & TANG, Ye-ran & CUI, Ling-xiao & Long, Wen. A Text Mining Based Study of Investor Sentiment and Its Influence on Stock Returns. Economic Computation And Economic Cybernetics Studies And Research. 2018. Vol 52. 183-199.
Sul, Hong & Dennis, Alan & Yuan, Lingyao. Trading on Twitter: Using Social Media Sentiment to Predict Stock Returns: Trading on Twitter. Decision Sciences. 10.1111/deci.12229. 2016
Windu Gata, P. Akurasi Text Mining Menggunakan Algoritma K-Nearest Neighbour pada Data Content Berita SMS. Jurnal Format. 2017
DOI: http://dx.doi.org/10.24014/ijaidm.v3i1.8245
Refbacks
- There are currently no refbacks.
Office and Secretariat:
Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau
Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942
Journal Indexing:
Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti | SINTA | Dimensions | ICI Index Copernicus
IJAIDM Stats