ADDITIONAL MENU
K-Nearest Neighbor for Classification of Tomato Maturity Level Based on Hue, Saturation, and Value Colors
Abstract
The selection of tomatoes can use several indicators. One of the indicators is the fruit color. In digital image processing, one of the color information that could be used in Hue, Saturation, and Value (HSV). In this research, HSV is proposed as a color model feature for information on the ripeness of tomatoes. The total data of tomato images used in this research were 400 images from four sides. The maturity level of tomatoes uses five levels, namely green, turning, pink, light red, and red. The process of divide data uses K-Fold Cross Validation with ten folds. The method used for classification is k-Nearest Neighbor (kNN). The scenario of the test performed is to combine the image size with the parameter value of the neighbor (k). The image sizes tested are 100x100 pixels, 300x300 pixels, 600x600 pixels and 1000x1000 pixels. The “k” values tested were 1, 3, 5, 7, 9, 11, and 13. The highest accuracy reached 92.5% in the image size 1000x1000 pixels with a parameter “k” is 3. The result of the experiment showed that the image size has a significant influence of accuracy, but the parameter value of neighbor (k) has an influence that is not too significant.
Full Text:
PDFReferences
A. Marliah, M. Hayati e I. Muliansyah, “Pemanfaatan Pupuk Organik Cair Terhadap Pertumbuhan dan Hasil Beberapa Varietas Tomat (Lycopersicum esculentum L),” Jurnal Agrista, vol. 16, nº 3, pp. 122-128, 2012.
M. P. Arakeria e Lakshmanab, “Computer Vision Based Fruit Grading System for Quality Evaluation of Tomato in Agriculture industry,” em 7th International Conference on Communication, Computing and Virtualization, 2016.
USDA, “United States Standards for Grades of Fresh Tomatoes,” United States Development of Agriculture, Washington, D.C, 1991.
R. Kusumanto, A. N. Tompunu e W. S. Pambudi, “Klasifikasi Warna Menggunakan Pengolahan Model Warna HSV,” Jurnal Ilmiah Elite Elektro, vol. 2, nº 2, pp. 83-87, 2011.
M. A. Anggriawan, M. Ichwan e D. B. Utami, “Pengenalan Tingkat Kematangan Tomat Berdasarkan Citra Warna Pada Studi Kasus Pembangunan Sistem Pemilihan Otomatis,” Jurnal Teknik Informatika dan Sistem Informasi (JuTISI), vol. 3, nº 3, pp. 550-564, 2017.
E. Budianita, Jasril e L. Handayani, “Implementasi Pengolahan Citra dan Klasifikasi K-Nearest Neighbour Untuk Membangun Aplikasi Pembeda Daging Sapi dan Babi,” Jurnal Sains, Teknologi dan Industri, vol. 12, nº 2, pp. 242-247, 2015.
F. S. Ni’mah, T. Sutojo e D. R. I. M. Setiadi, “Identifikasi Tumbuhan Obat Herbal Berdasarkan Citra Daun Menggunakan Algoritma Gray Level Co-occurence Matrix dan K-Nearest Neighbor,” Jurnal Teknologi dan Sistem Komputer, vol. 6, nº 2, pp. 51-56, 2018.
M. Ramadhani e D. H. Murti, “Klasifikasi Ikan Menggunakan Oriented Fast and Rotated Brief (ORB) Dan k-Nearest Neighbor (kNN),” Jurnal Ilmiah Teknologi Informasi, vol. 16, nº 2, p. 115–124, 2018.
Adiwijaya, M. N. Aulia, M. S. Mubarok, W. U. Novia e F. Nhita, “A comparative study of MFCC-KNN and LPC-KNN for hijaiyyah letters pronounciation classification system,” em 5th International Conference on Information and Communication Technology (ICoIC7), Malacca City, Malaysia, 2017.
M. S. Sarma, Y. Srinivas, M. Abhiram, L. Ullala, M. S. Prasanthi e J. R. Rao, “Insider Threat Detection with Face Recognition and KNN User Classification,” em IEEE International Conference on Cloud Computing in Emerging Markets (CCEM), Bangalore, India, 2017.
M. Vaishnnave, K. S. Devi, P. Srinivasan e G. A. P. Jothi, “Detection and Classification of Groundnut Leaf Diseases using KNN classifier,” em IEEE International Conference on System, Computation, Automation and Networking (ICSCAN), Pondicherry, India, 2019.
A. R. Smith, “Color gamut transform pairs,” ACM Siggraph Computer Graphics, vol. 12, nº 3, pp. 12-19, 1978.
S. Ozdemir, Principles of Data Science, Birmingham: Packt Publishing Ltd, 2016.
F. Gorunescu, Data Mining: Concepts, Models and Techniques, Springer, 2011.
M Mustakim, G Oktaviani, "Algoritma K-Nearest Neighbor Classification Sebagai Sistem Prediksi Predikat Prestasi Mahasiswa", Jurnal Sains dan Teknologi Industri, Vol. 13 No. 2, pp. 195-202, 2016.
DOI: http://dx.doi.org/10.24014/ijaidm.v2i2.7975
Refbacks
- There are currently no refbacks.
Office and Secretariat:
Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau
Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942
Journal Indexing:
Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti | SINTA | Dimensions | ICI Index Copernicus
IJAIDM Stats