ADDITIONAL MENU
Data Mining Predictive Modeling for Prediction of Gold Prices Based on Dollar Exchange Rates, Bi Rates and World Crude Oil Prices
Abstract
Gold is an investment instrument that is quite safe from inflationary attacks, and gold is one aspect of initiating investment. Can by buying gold in physical form and then selling when the price has risen high or by digitally investing gold. One of them is by trading gold online. To maximize the benefits of gold trading, a gold price prediction (XAUUSD) is needed for traders.
This study aims to (1) Analyze various factors that influence the price of gold (2) Provide recommendations about the prediction of gold prices. Materials that will be used as objects of research to produce gold price predictions include historical XAUUSD (Gold) data itself, historical crude oil data, historical dollar data (USD IDR) and BI 7-Day Repo Rate (BI Rate). ), in producing the prediction of the gold price used Mining Predictive Modeling data using the linear regression function. The results to be achieved from this study is to provide accurate gold price predictions so that it can be used as a reference in making decisions to buy / sell positions in trading. The prediction of the XAUUSD gold price generated is expected to provide significant interest to the investment players (traders) in order to maximize the profit generated.
From the results of the trading tests that have been carried out, the implementation of predictive modeling data mining using a linear regression function produces recommendations for gold price predictions (XAUUSD) with an accuracy of 85%.
This study aims to (1) Analyze various factors that influence the price of gold (2) Provide recommendations about the prediction of gold prices. Materials that will be used as objects of research to produce gold price predictions include historical XAUUSD (Gold) data itself, historical crude oil data, historical dollar data (USD IDR) and BI 7-Day Repo Rate (BI Rate). ), in producing the prediction of the gold price used Mining Predictive Modeling data using the linear regression function. The results to be achieved from this study is to provide accurate gold price predictions so that it can be used as a reference in making decisions to buy / sell positions in trading. The prediction of the XAUUSD gold price generated is expected to provide significant interest to the investment players (traders) in order to maximize the profit generated.
From the results of the trading tests that have been carried out, the implementation of predictive modeling data mining using a linear regression function produces recommendations for gold price predictions (XAUUSD) with an accuracy of 85%.
Full Text:
PDFReferences
Guntur M, Santony J., Yuhandri, Prediksi Harga Emas dengan Menggunakan Metode Naive Bayes dalam Investasi untuk Meminimalisasi Resiko. 2018; JURNAL RESTI, 2(1), pp. 354-360
Berry M.J.A., Linof G.S., Data Mining Techniques For Marketing, Sales, and Customer Relationship Management. Indianapolis, Indiana: Wiley Publishing 2004.
Kotu V., Deshpande B., Predictive Analitics and Data Mining Concepts and Practice with Rapidminer. 225 Wyman Street Waltham MA 02451 USA: Morgan Kaufmann. 2015.
Nofriansyah D., Konsep Data Mining Sistem Pendukung Keputusan. Yogyakarta: DeePublish. 2014.
Salim J., Panduan Praktis Bermain Valas Lewat Internet. Jl. Haji Montong No. 57 Ciganjur Jagaraksa Jakarta Selatan: MediaKita. 2008.
Smart S.B., Gitman L.J., Joehnk M.D., Fundamentals of Investing. England: Pearson. 2014.
Sudaryo Y., Yudanegara A., Investasi Bank dan Lembaga Keuangan. Jl. Beo 38-40 Yogyakarta: Andi Offset. 2014.
Suharto F.T., Menambang Kekayaan dari Bisnis Emas Tanpa Mengeruk Alam. Jl. Palmerah Barat No. 29-32 Jakarta: Elexmedia Komputindo. 2014.
Tanuwidjaja W., Cerdas Investasi Emas Tips Membeli, Menyimpan, dan Menjual Emas untuk Memperoleh Keuntungan Optimal. Jl.Irian Jaya D-24 Yogyakarta: MedPress. 2009
Witten I.H., Frank E., Data Mining Practical Machine Learning Tools and Techniques. 550 Sansome Street Suite 400 San Francisco: Morgan Kaufmann. 2005.
https://id.wikipedia.org/w/index.php?title=Regresi_Linear, Diakses pada tanggal 6 Oktober 2018
https://cermati.com/artikel/inilah-7-produk-investasi-pilihan-beserta-kelebihan-dan-kekurangannya, Diakses pada tanggal 6 Oktober 2018
https://www.investing.com/currencies/xau-usd-historical-data, Diakses pada tanggal 1 Oktober 2018 - 21 Februari 2019
https://www.investing.com/commodities/crude-oil-historical-data, Diakses pada tanggal 1 Oktober 2018 - 21 Februari 2019
https://www.investing.com/currencies/usd-idr-historical-data, Diakses pada tanggal 1 Oktober 2018 - 21 Februari 2019
https://www.bi.go.id/id/moneter/bi-7day-RR/data/Contents/Default.aspx, Diakses pada tanggal 1 Oktober 2018 - 21 Februari 2019
https://docs.rapidminer.com/latest/studio/operators/modeling/predictive/functions/linear_regression.html, Diakses pada tanggal 10 Oktober 2018
https://mifx.com/education-read/course-1/3/8/pengenalan-dunia-trading, Diakses pada tanggal 10 Oktober 2018
https://www.finansialku.com/karat-emas-alasan-investasi-emas/, Diakses pada tanggal 10 Oktober 2018
DOI: http://dx.doi.org/10.24014/ijaidm.v2i2.6864
Refbacks
- There are currently no refbacks.
Office and Secretariat:
Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau
Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942
Journal Indexing:
Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti | SINTA | Dimensions | ICI Index Copernicus
IJAIDM Stats