ADDITIONAL MENU
Learning Vector Quantization 3 (LVQ3) and Spatial Fuzzy C-Means (SFCM) for Beef and Pork Image Classification
Abstract
Base on some cases in Indonesia, meat sellers often mix beef and pork. Indonesia is a predominantly Muslim country. Pork is forbidden in Islam. In this research, the classification of beef and pork image was performed. Spatial Fuzzy C-Means is used for image segmentation. GLCM and HSV are used as a feature of segmentation results. LVQ3 is used as a method of classification. LVQ3 parameters tested were the variety of learning rate values and window values. The learning rate values used is 0.0001; 0.01; 0.1; 0.4; 0.7; 0.9 and the window values used is 0.0001; 0.4; 0.7. The training data used is 90% of the total data, and the testing data used is 10%. Maximum epoch used is 1000 iterations. Based on the test results, the highest accuracy was 91.67%.
Full Text:
PDFReferences
N. A. Valous, F. Mendoza e P. A. Da-Wen Sun, “Texture appearance characterization of pre-sliced pork ham images using fractal metrics: Fourier analysis dimension and lacunarity,” Food Research International, vol. 42, pp. 353-362, 2009.
A. Iqbal, N. A. Valous, F. Mendoza, D.-W. Sun e P. Allen, “Classification of pre-sliced pork and Turkey ham qualities based on image colour and textural features and their relationships with consumer responses,” Meat Science, vol. 84, p. 455–465, 2010.
A. F. Hartono, Dwijanto e Z. Abidin, “Implementasi Jaringan Syaraf Tiruan Backpropagation Sebagai Sistem Pengenalan Citra Daging Babi dan Citra Daging Sapi,” Unnes Journal of Mathematics, vol. 1, nº 2, pp. 125-130, 2012.
Kiswanto, E. Sediyono e Suhartono, “Identifikasi Citra Untuk Mengidentifikasi Jenis Daging Sapi Menggunakan Transformasi Wavelet Haar,” Jurnal Sistem Informasi Bisnis, vol. 1, nº 2, pp. 73-79, 2014.
Jasril, M. S. Cahyana, L. Handayani e E. Budianita, “Implementasi Learning Vektor Quantization (LVQ) dalam Mengidentifikasi Citra Daging Babi dan Daging Sapi,” em Seminar Nasional Teknologi Informasi, Komunikasi dan Industri (SNTIKI) 7, Pekanbaru, 2015.
D. S. S. Mahdi e R. S. Mahmood, “MR Brain Image Segmentation Using Spatial Fuzzy C- Means Clustering Algorithm,” Journal of Engineering, pp. 78-89, 2014.
N. M. Ali, N. K. A. M. Rashid e Y. M. Mustafah, “Performance Comparison between RGB and HSV Color Segmentations for Road Signs Detection,” Applied Mechanics and Materials, vol. 393, pp. 550-555, 2013.
R. Listia e A. Harjoko, “Klasifikasi Massa pada Citra Mammogram Berdasarkan Gray Level Cooccurence Matrix (GLCM),” IJCCS, Vol.8, No.1, pp. 59-68, 2014.
E. Budianita e W. Prijodiprodjo, “Penerapan Learning Vector Quantization (LVQ) untuk Klasifikasi Status Gizi Anak,” Indonesian Journal of Computing and Cybernetics Systems (IJCCS), vol. 7, nº 2, pp. 155-166, 2013.
W. Jatmiko, P. Mursanto, B. Hardian, A. Bowolaksono, B. Wiweko, M. A. Akbar, I. P. Satwika, Z. Immadudin, M. s. Alvissalim, I. Habibie, M. A. Ma'sum e M. N. Kurniawan, Teknik Biomedis: Teori dan Aplikasi, Depok: Fakultas Ilmu Komputer, Universitas Indonesia, 2012.
J. Han, M. Kamber e J. Pei, Data Mining: Concept and Techniques, 3rd ed., USA, 2012.
DOI: http://dx.doi.org/10.24014/ijaidm.v1i2.5024
Refbacks
- There are currently no refbacks.
Office and Secretariat:
Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau
Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942
Journal Indexing:
Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti | SINTA | Dimensions | ICI Index Copernicus
IJAIDM Stats