Implementation of Backpropagation Neural Network to Detect Suspected Lung Disease

Fadhilah Syafria, Boni Iqbal, Elvia Budianita, Iis Afrianty

Abstract


Many People were less concerned with lung health, it caused people identified as suffering from lung diseases. Early symptoms that often appear  was cough that took a long time and could be the beginning of more severe disease. Therefore it was necessary to create application that could detect suspected person contracted lung disease. The applications were made by using artificial neural network with Backpropagation with initial input data, symptoms by patients of lung diseases. The symptoms were 22, and kind of lung diseases as a diagnosis were asthma, pneumonia, pulmonary tuberculosis and lung cancer. It used medical records of lung disease as much as 110 data. Network training uses 3 different architectures [input neurons ; hidden neurons ; output neurons], liked [22; 22 ; 2], [22 ; 33 ; 2] and [22 ; 43 ; 2]. Testing with 2 training data sharing and test data, namely comparison 90:10 and 80:20. The Parameters values were used namely learning rate 0.1, 0.3, 0.5, 0.7 and 0.9. The number of epoch was used, that is 15 epoch, 25 epoch and 35 epoch. Based on the tests performed, it was obtained an accuracy system on the 90:10 data comparison of 82% and the 80:20 data ratio of 82% as well. Thus, backpropagation method could be applied in detecting suspected lung diseases.

Full Text:

PDF

References


I. Junaidi, “Penyakit Paru & Saluran Napas,” in PT Bhuana Ilmu Populer, vol. 1, no. 2, Jakarta: Bhuana Ilmu Popular, 2010, pp. 75–81.

M. Yunus and S. Setyowibowo, “Aplikasi sistem pendukung keputusan diagnosa penyakit paru- paru dengan metode forward chaining,” vol. 2, no. 2, pp. 95–114, 2011.

A. W. Ganda Anggara, Gede Pramayu, “Membangun sistem pakar menggunakan teorema bayes untuk mendiagnosa penyakit paru-paru,” Semin. Nas. Teknol. Inf. dan Multimed. 2016, pp. 79–84, 2016.

E. Rahmawati, “Sistem Pakar Diagnosis Penyakit Paru-Paru Menggunakan Metode Forward Chaining,” J. Tek. Elektro, vol. 8, no. 2, 2016.

F. Amato, A. López, E. M. Peña-méndez, P. Vaňhara, and A. Hampl, “Artificial neural networks in medical diagnosis,” pp. 47–58, 2013.

S. Kusumadewi and S. Hartati, “Neuro-Fuzzy: Integrasi Sistem Fuzzy dan Jaringan Syaraf,” in Yogyakarta: Graha Ilmu, 2nd ed., Yogayakarta: Graha Ilmu, 2006.

L. V Fausett, Fundamentals of neural networks. Prentice-Hall, 1994.

U. D. Bambang Yuwono, Heru Cahya Rustamaji, “Diagnosa gangguan saluran pernafasan menggunakan jaringan syaraf tiruan,” semnasIF, vol. 2011, no. semnasIF, pp. 27–34, 2011.

E. S. Ratnaningtyas Widyani Purnamasari, Dwijanto, “Implementasi Jaringan Syaraf Tiruan Backpropagation Sebagai Sistem Deteksi Penyakit Tuberculosis (TBC),” vol. 2, no. 2, pp. 0–6, 2013.

G. . Rajasekaran, S., Vijayalaksmi, Neural Networks, Fuzzy Logic, Genetic Algorithms, Synthesis and Applications. New Delhi: Prentice-Hall of India, 2007

I. Afrianty, D. Nasien, M. R. A. Kadir, and H. Haron, “Backpropagation neural network for sex determination from patella in forensic anthropology,” Lect. Notes Electr. Eng., vol. 279 LNEE, 2014.

Sri, K. 2003. Artificial Intelligence (Teknik dan Aplikasinya). Graha Ilmu. Yogyakarta.

A. Indriani, “Klasifikasi Data Forum dengan menggunakan Metode Naïve Bayes Classifier,” Semin. Nas. Apl. Teknol. Inf., pp. 5–10, 2014




DOI: http://dx.doi.org/10.24014/ijaidm.v1i1.5023

Refbacks

  • There are currently no refbacks.


Office and Secretariat:

Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau

Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942

Click Here for Information


Journal Indexing:

Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti  | SINTA | Dimensions | ICI Index Copernicus 

IJAIDM Stats