Implementation of Data Mining to Predict The Feasibility of Blood Donors Using C4.5 Algorithm

Anita Febriani, Tiara Trimadya Rahmawati, Eka Sabna

Abstract


Blood Transfusion Unit PMI Pekanbaru City is part of a company or agency that serves blood donation, every blood bag obtained from the community voluntarily come to PMI to donate blood with the goal of humanity. In Blood Transfusion Unit PMI Pekanbaru City, has provisions to be blood donors that must be met in order to donate blood in UTD PMI Pekanbaru City. Data Mining is a combination of a number of computer science disciplines that are defined as the process of discovering new patterns from massive data sets. By using RapidMiner software and using the method of Decision Tree Algorithm C4.5 to determine the eligibility of blood donors based on Age, Weight, Hemoglobin, and Blood Pressure. In the study of hemoglobin is the most decisive variable in blood donors. And the result accuracy is 94.02% which means the accuracy of this model is very good.

Full Text:

PDF

References


Ambarwati, Lia. Belajar Data Mining dengan RapidMiner. https://www.academia.edu/7712860/Belajar_Data_Mining_dengan_RapidMiner diakses tanggal [Jumat, 06-10-2017. Pukul 10.06].

Han, J dan Kamber, M. 2006. Data Mining Concept and Techniques Second Edition. Morgan Kauffman. San Francisco.

Indra, Iriawan. 2013. Usia menurut DepKes. https://www.scribd.com/doc/162685921/usia-menurut-depkes diakses tanggal [Kamis, 05-10-2017. Pukul 22.53].

Kusuma, Ariska Aprilia. 2016. Aplikasi Penentuan Calon Pendonor Darah Menggunakan Metode Algoritma ID3 (Studi Kasus PMI Kota Kediri). http://digilib.unpkediri.ac.id/mahasiswa/file_artikel/2016/11.1.03.03.0045.pdf diakses tanggal [Minggu, 24-09-2017, Pukul 09.42].

Kusrini dan Luthfi, E Taufik. 2009. Algoritma Data Mining. Andi Offset. Yogyakarta.

Larose, Daniel T. 2005. Disconvering Knowledge in Data : An Introduction to Data Mining. John Willey & Sons, Inc.

Larose, Daniel T. 2006. Data Mining Methods and Models. Haboken New Jersey. John Willey & Sons, Inc.

Pane, Nurmaya Husnaeni. 2016. Gejala Hemoglobin Rendah dan Penyebab HB Rendah. https://id.linkedin.com/pulse/gejala-hemoglobin-rendah-dan-penyebab-hb-nurmaya-husnaeni-pane diakses tanggal [Selasa, 10-10-2017, Pukul 09.50].

PERMENKES NO 91 TAHUN 2015. 2016. Standar Pelayanan Transfusi Darah. http://peraturan.go.id/permen/kemenkes-nomor-91-tahun-2015-tahun-2016.html diakses tanggal [Senin, 09-10-2017. Pukul 20.18].

Prasetyo, Eko. 2014. Data Mining Mengolah Data Menjadi Informasi Menggunakan Matlab. Andi Offset. Yogyakarta

Prasetyo, Eko. 2012. “Data Mining-Konsep dan Aplikasi Menggunakan Matlab. Andi Offset. Yogyakarta.

Rahman, Taufik. 2012. Perbedaan Tekanan Darah Pada Pasien Hipertensi Sebelum dan Sesudah Menjalani Pemeriksaan oleh Dokter di RSUD Simo Boyolali. http://eprints.ums.ac.id/22379/9/PUBLIKASI.pdf diakses tanggal [Rabu, 04-10-2017. Pukul 15.27].

Suyanto. 2017. Data Mining Untuk Klasifikasi Dan Klasterisasi Data. Informatika Bandung. Bandung.




DOI: http://dx.doi.org/10.24014/ijaidm.v1i1.4562

Refbacks

  • There are currently no refbacks.


Office and Secretariat:

Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau

Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942

Click Here for Information


Journal Indexing:

Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti  | SINTA | Dimensions | ICI Index Copernicus 

IJAIDM Stats