Predicting Student Learning Outcomes in Vocational Computer and Network Engineering Using Naïve Bayes

Lailam Baridah, Raissa Amanda Putri

Abstract


This study applied the Naïve Bayes algorithm to predict student learning outcomes in the Basic Computer and Network Engineering subject at SMKN 1 Sipispis. A quantitative approach was employed, using data from 311 students, which consisted of both academic variables (assignments, midterm exams, and final exams) and non-academic variables (attendance, attitude, and learning interest). The dataset was preprocessed by cleaning, encoding, and splitting into training and testing sets using several ratios (90/10, 80/20, 70/30, and 60/40). The Naïve Bayes model was trained and evaluated using accuracy, precision, recall, and F1-score metrics. The best performance was achieved with the 80/20 data split, yielding an accuracy of 74.6%, demonstrating the model’s ability to capture probabilistic relationships between academic and non-academic factors. These findings indicate that the Naïve Bayes algorithm can effectively classify student performance levels such as Fair, Good, and Excellent, providing a reliable foundation for an automated decision support system. The developed web-based system can help teachers identify students at risk of declining performance early, enabling more adaptive and data-driven educational interventions

Keywords


Educational Data Mining; Naïve Bayes; Prediction System; Student Learning Outcomes; Vocational Education

Full Text:

PDF

References


T. S. Nurazizah, “Artificial Intelligence dan Machine Learning dalam Kehidupan Manusia,” 2025. [Online]. Available: https://www.researchgate.net/publication/389464205

A. Ashari Muin, “Metode Naive Bayes Untuk Prediksi Kelulusan (Studi Kasus: Data Mahasiswa Baru Perguruan Tinggi),” Jurnal Ilmiah Ilmu Komputer, vol. 2, no. 1, 2016, [Online]. Available: http://ejournal.fikom-unasman.ac.id

D. El, R. Purba, and Z. A. Matondang, “Web Quality Evaluation Penerapan Model View Controller Design Pattern pada Pengembangan Sistem Informasi SMK Negeri 1 Sipispis,” 2021.

I. Magdalena, H. N. Fauzi, and R. Putri, “Pentingnya Evaluasi Dalam Pembelajaran Dan Akibat Memanipulasinya,” 2020. [Online]. Available: https://ejournal.stitpn.ac.id/index.php/bintang

D. Khairy, N. Alharbi, M. A. Amasha, M. F. Areed, S. Alkhalaf, and R. A. Abougalala, “Prediction of student exam performance using data mining classification algorithms,” Educ Inf Technol (Dordr), vol. 29, no. 16, pp. 21621–21645, Nov. 2024, doi: 10.1007/s10639-024-12619-w.

S. M. Hudzaifah et al., “Implementasi Algoritma Naïve Bayes dalam Memprediksi Tingkat Kelulusan Siswa pada Sertifikasi Mikrotik Certified Network Associate (MTCNA),” 2024. [Online]. Available: https://journal.stmiki.ac.id

I. P. Oktavia and N. L. Anggreini, “Implementasi Algoritma Naive Bayes Dengan Metode Klasifikasi Dalam Menentukan Siswa Penerima Bantuan Program Indonesia Pintar (Studi Kasus : SMPN 3 Cihampelas),” 2024.

I. K. Zega, N. Medina, D. Aprillia S, and Y. Yennimar, “Implementasi Algoritma Naïve Bayes untuk Memprediksi Kemampuan Pemrograman Mahasiswa Teknik Informatika Menggunakan Dataset Kuesioner,” Jurnal Pendidikan dan Teknologi Indonesia, vol. 4, no. 11, pp. 377–389, Dec. 2024, doi: 10.52436/1.jpti.483.

R. Angella, C. Walangare, and B. Sujatmiko, “Penerapan Algoritma Naive Bayes Dalam Sistem Pendukung Keputusan Pemilihan Peminatan Konsentrasi Berdasarkan Nilai Akademik Berbasis Web Pada Program Studi S1 Pendidikan Teknologi Informasi,” 2022.

R. Gunawan, S. Hadi Wijoyo, and S. A. Wicaksono, “Klasifikasi Hasil Belajar Peserta Didik Pada Jurusan Teknik Komputer dan Jaringan (TKJ) di SMK Negeri 3 Malang Menggunakan Algoritme Naïve Bayes,” 2019. [Online]. Available: http://j-ptiik.ub.ac.id

A. A. Permana, R. Taufiq, R. Destriana, and A. Nur’aini, “Implementasi Algortima Naïve Bayes Untuk Prediksi Kelulusan Mahasiswa,” vol. 13, pp. 65–70, 2024, [Online]. Available: http://jurnal.umt.ac.id/index.php/jt/index

J. Teknologi Informasi Mura Randi Estian Pambudi, H. Purnomo, and R. Irawan, “Pemanfaatan Data Mining Untuk Prediksi Prestasi Akademik Siswa Berdasarkan Pola Kehadiran, Aktivitas Belajar Mengguakan Naive Bayes Logistic Regression,” 2024.

I. I. Sepulau, K. Kusumanto, and N. L. Husni, “Student Behavior Monitoring System in Classroom Environment Using YOLOv8,” Indonesian Journal of Artificial Intelligence and Data Mining, vol. 8, no. 2, p. 437, Aug. 2025, doi: 10.24014/ijaidm.v8i2.37086.

R. Rahayu, “Algoritma Naive Bayes,” 2023. [Online]. Available: https://www.researchgate.net/publication/376713713

M. Salsabila, L. Lindawati, and M. Fadhli, “Development of a CNN-Based Mental Health Consultation Application Integrating Facial Expressions and DASS-42 Questionnaire,” Indonesian Journal of Artificial Intelligence and Data Mining, vol. 8, no. 2, p. 417, Aug. 2025, doi: 10.24014/ijaidm.v8i2.37525.

S. K. A. Firdausi, “4 Tahap Preprocessing Data, Beserta Penjelasan & Studi Kasus,” https://dibimbing.id/blog/detail/mengenal-apa-itu-tahap-preprocessing-data.

N. S. Fauziah and R. D. Dana, “Implementasi Algoritma Naive bayes dalam Klasifikasi Status Kesejahteraan Masyarakat Desa Gunungsari,” Blend Sains Jurnal Teknik, vol. 1, no. 4, pp. 295–305, Mar. 2023, doi: 10.56211/blendsains.v1i4.234.

M. Saiful, S. Samsuddin, and Moh. F. Wajdi, “Implementasi Algoritma Naive Bayes Untuk Memprediksi Predikat Ketuntasan Belajar Siswa Pasca Pandemi Covid 19,” Infotek: Jurnal Informatika dan Teknologi, vol. 4, no. 1, pp. 29–38, Jan. 2021, doi: 10.29408/jit.v4i1.2982.

D. Dahri, F. Agus, and D. M. Khairina, “Metode Naive Bayes Untuk Penentuan Penerima Beasiswa Bidikmisi Universitas Mulawarman,” Jurnal Informatika Mulawarman, vol. 11, no. 2, p. 29, 2016.

N. S. Ramadan, D. Darwis, L. Ratu, K. Kedaton, and B. Lampung, “Perbandingan Metode Naïve Bayes Dan Svm Untuk Sentimen Analisis Masyarakat Terhadap Serangan Ransomware Pada Data KIP-K,” Jurnal Sistem Informasi dan Informatika (Simika), vol. 8, no. 1, 2025.

R. Nurhidayat and K. E. Dewi, “KOMPUTA : Jurnal Ilmiah Komputer dan Informatika Penerapan Algoritma K-Nearest Neighbor Dan Fitur Ekstraksi N-Gram Dalam Analisis Sentimen Berbasis Aspek,” vol. 12, no. 1, 2023, [Online]. Available: https://www.kaggle.com/datasets/hafidahmusthaanah/skincare-review?select=00.+Review.csv.

U. I. Wahyuni, R. Kurniawan, A. Info, K. Kunci, and K. Kemampuan, “Algoritma K-Nearest Neighbor Classification Sebagai Sistem Pengelompokan Kemampuan Akademik Siswa Berbasis Web,” vol. 5, no. 2, pp. 589–600, 2025, doi: 10.51454/decode.v5i2.1246.

Y. Y. Zandroto, A. V. Vitianingsih, A. L. Maukar, N. K. Hikmawati, and R. Hamidan, “Sentiment Analysis of BCA Mobile App Reviews Using K-Nearest Neighbour and Support Vector Machine Algorithm,” Indonesian Journal of Artificial Intelligence and Data Mining, vol. 8, no. 2, p. 448, Aug. 2025, doi: 10.24014/ijaidm.v8i2.37773.

N. D. Prasojo and M. Z. Abdillah, “Perancangan Sistem Pakar Untuk Mendeteksi Kerusakan Laptop Dengan Metode Naive Bayes Berbasis Web,” 2024.

W. I. Rahayu, C. Prianto, and E. A. Novia, “Perbandingan Algoritma K-Means dan Naïve Bayes Untuk Memprediksi Prioritas Pembayaran Tagihan Rumah Sakit Berdasarkan Tingkat Kepentingan pada PT. Pertamina (PERSERO),” 2021.




DOI: http://dx.doi.org/10.24014/ijaidm.v8i3.38333

Refbacks

  • There are currently no refbacks.


Office and Secretariat:

Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau

Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942

Click Here for Information


Journal Indexing:

Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti  | SINTA | Dimensions | ICI Index Copernicus 

IJAIDM Stats