ADDITIONAL MENU
Automatic Detection of Acne Types Using the YOLOv5 Method
Abstract
Acne is very common due to several factors such as hormones, hygiene, and environmental exposure. This research aims to develop an automatic detection system for facial skin problems using the You Only Look Once v5 (YOLOv5) algorithm, focusing on the problem of acne types on acne-prone faces, and this research is the latest research that has never been done before. The research methodology was carried out by taking datasets directly on acne faces, with a sample of 1230 images. The research process includes data collection, labeling using the Roboflow platform, dividing the dataset into training, testing, and validation data, and implementing the YOLOv5 algorithm using Google Colab. The research stages include data input, object labeling, dataset configuration, YOLOv5 preparation, modeling, model testing, hyperparameter tuning, and model performance evaluation. The results of this study resulted in an accuracy rate seen based on the mapped value of 87.6%, so this can be considered that the model is considered good in detecting the type of acne on facial skin problems in accordance with testing on data, and this model can be implemented to automatically detect facial skin problems, especially on faces with acne, in the future.
Keywords
Acne; Facial Skin Problems; Image; Object Detection; YOLOv5
Full Text:
PDFReferences
D. Nafis Alfarizi, R. Agung Pangestu, D. Aditya, M. Adi Setiawan, and P. Rosyani, “Penggunaan Metode YOLO Pada Deteksi Objek: Sebuah Tinjauan Literatur Sistematis,” 2023. [Online]. Available: https://jurnalmahasiswa.com/index.php/aidanspk
C. D. Sinaulan and A. Hantara, “Model Klasifikasi Permasalahan Kulit Wajah Menggunakan Metode Support Vector Machine,” Jurnal Pendidikan dan Kewirausahaan, vol. 9, no. 1, pp. 297–308, Oct. 2021, doi: 10.47668/pkwu.v9i1.246.
D. R. Kumampung and G. K. Wadrianto, “Jerawat Jadi Keluhan 2 Juta Orang Indonesia, Apa Solusianya?,” https://lifestyle.kompas.com/read/2019/12/12/204658820/jerawat-jadi-keluhan-2-juta-orang-indonesia-apa-solusinya#:~:text=KOMPAS.com%20-%20Jerawat%20yang%20muncul%20di%20wajah%20kerap%20menjadi%20masalah.
T. Manggalla, “Permasalahan Jerawat Masih Jadi Problem Utama di Indonesia,” https://lifestyle.sindonews.com/read/880087/186/permasalahan-jerawat-masih-jadi-problem-utama-di-indonesia-1662646154.
R. Fadli, “5 Jenis Jerawat yang Sering Muncul di Wajah,” https://www.halodoc.com/artikel/5-jenis-jerawat-yang-sering-muncul-di-wajah?srsltid=AfmBOoryQxMnGDysCr8mj_32Gx4KL6-S1H09lzLbKBcd7Yn8jKeSIStb.
Y. K. Kumarahadi, M. Z. Arifin, S. Pambudi, T. Prabowo, and K. Kusrini, “SISTEM PAKAR IDENTIFIKASI JENIS KULIT WAJAH DENGAN METODE CERTAINTY FACTOR,” Jurnal Teknologi Informasi dan Komunikasi (TIKomSiN), vol. 8, no. 1, Apr. 2020, doi: 10.30646/tikomsin.v8i1.453.
N. Eka Budiyanta et al., “Sistem Deteksi Kemurnian Beras berbasis Computer Vision dengan Pendekatan Algoritma YOLO,” vol. 6, no. 1, 2021, doi: 10.30591/jpit.v6i1.2309.
A. Setiyadi, E. Utami, and D. Ariatmanto, “Analisa Kemampuan Algoritma YOLOv8 Dalam Deteksi Objek Manusia Dengan Metode Modifikasi Arsitektur ,” Jurnal Sains Komputer & Informatika (J-SAKTI), vol. 7, Sep. 2023, doi: 10.30645/j-sakti.v7i2.694.
A. A. Malik, “IDENTIFIKASI WAJAH MANUSIA MENGGUNAKAN YOLO FRAMEWORKS DENGAN METODE SCALE MODIFIER SEBAGAI PREPROCESSING SECARA REAL TIME,” 2023. Available: http://eprints.untirta.ac.id/id/eprint/30442.
Roboflow, “Roboflow,” https://roboflow.com/.
N. Yulia, R. Cahyaningtyas, and Y. Djamain, “PETIR: Jurnal Pengkajian dan Penerapan Teknik Informatika Implementasi You Only Look Once Version 5 (Yolov5) Untuk Deteksi Jenis Jerawat Pada Wajah”, doi: 10.33322/petir.v17i1.2203.
S. Panjaitan, C. Sitepu, J. Sinaga, P. Matematika, F. Keguruan, and I. Pendidikan, “DETEKSI JERAWAT MENGGUNAKAN ARSITEKTUR YOLOV3”. Available: https://jurnalintelektiva.com/index.php/jurnal/article/view/929.
R. Hidayat, “IMPLEMENTASI ALGORITMA YOU ONLY LOOK ONCE (YOLO) V5 UNTUK KLASIFIKASI JENIS MONYET,” 2023. Available: https://repositori.untidar.ac.id/index.php?p=fstream&fid=37147&bid=13461.
D. I. Mulyana and M. A. Rofik, “Implementasi Deteksi Real Time Klasifikasi Jenis Kendaraan Di Indonesia Menggunakan Metode YOLOV5.”, doi: 10.31004/jptam.v6i3.4825.
Y. Arvio, D. Tiara Kusuma, and I. B. Sangadji, “PETIR: Jurnal Pengkajian dan Penerapan Teknik Informatika Algoritma YOLO V5 yang Efisien untuk Identifikasi Masker Cacat Pada Mesin Produksi”, doi: 10.33322/petir.v17i1.2268.
Y. Fauzia Achmad, A. Yulfitri, and M. B. Ulum, “Identifikasi Jenis Jerawat Berdasarkan Tekstur Menggunakan GLCM dan Backpropagation,” Jurnal Sains Manajemen Informatika dan Komputer, vol. 20, no. 2, pp. 139–146, 2021, [Online]. Available: https://ojs.trigunadharma.ac.id/
S. Amanda Putri, G. Ramadhan, Z. Alwildan, R. Afriansyah, and P. Manufaktur Negeri Bangka Belitung, “Perbandingan Kinerja Algoritma YOLO Dan RCNN Pada Deteksi Plat Nomor Kendaraan” 2023, doi: 10.33504/jitt.v1i1.30.
S. Yohanandan, “What is Mean Average Precision (MAP) and how does it work,” https://xailient.com/blog/what-is-mean-average-precision-and-how-does-it-work/.
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection,” Jun. 2015, [Online]. Available: http://arxiv.org/abs/1506.02640
I. Purwita Sary, E. Ucok Armin, S. Andromeda, E. Engineering, and U. Singaperbangsa Karawang, “Performance Comparison of YOLOv5 and YOLOv8 Architectures in Human Detection Using Aerial Images,” Ultima Computing : Jurnal Sistem Komputer, vol. 15, no. 1, 2023, doi: 10.31937/sk.v15i1.3204.
D. Nafis Alfarizi, R. Agung Pangestu, D. Aditya, M. Adi Setiawan, and P. Rosyani, “Penggunaan Metode YOLO Pada Deteksi Objek: Sebuah Tinjauan Literatur Sistematis,” 2023. [Online]. Available: https://jurnalmahasiswa.com/index.php/aidanspk
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection,” Jun. 2015, [Online]. Available: http://arxiv.org/abs/1506.02640
D. Cochard, “YOLOv5 : The Latest Model for Object Detection,” https://medium.com/axinc-ai/yolov5-the-latest-model-for-object-detection-b13320ec516b.
DOI: http://dx.doi.org/10.24014/ijaidm.v8i1.35617
Refbacks
- There are currently no refbacks.
Office and Secretariat:
Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau
Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942
Journal Indexing:
Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti | SINTA | Dimensions | ICI Index Copernicus
IJAIDM Stats