Analysis of The Level of Satisfaction of Electric Bus Passengers in Medan Using C5.0 Algorithm

Azizah Oktarina Ritonga, Sriani Sriani

Abstract


The C5.0 method was successfully implemented in the analysis of passenger satisfaction level of Medan City Electric Bus using 500 passenger data divided into 70% for training data (350 data) and 30% for test data (150 data). The steps include creating a decision tree based on training data, where the model learns to identify patterns that affect passenger satisfaction. After the decision tree is formed, the model is tested using testing data to measure the prediction accuracy. The evaluation results show that the C5.0 model is able to classify the testing data effectively, providing an accurate picture of passenger satisfaction levels in the tested context. Based on manual calculations with 10 testing data against training data, the following prediction results are obtained: out of 10 testing data, the model predicts 7 data as Satisfied (satisfied) and 3 data as Dissatisfied (not satisfied). This result shows that the model managed to classify most of the testing data correctly, giving a positive indication of the accuracy and reliability of the model in identifying passenger satisfaction levels. Based on the evaluation results of the C5.0 model using R, the training data showed accuracy, precision, and recall each reached 100%. This indicates that the C5.0 model was perfectly successful in classifying all training data, with no errors in prediction or classification. This result confirms that the model is very effective and reliable in analyzing the satisfaction level of Medan City Electric Bus passengers, demonstrating its ability to provide accurate and consistent predictions.


Keywords


C5.0 Algortima; Data Mining; Decision Tree; Electric Bus; Satisfaction

Full Text:

PDF

References


S. A. Sianipar and H. Herman, “PENGARUH KUALITAS PELAYANAN DAN FASILITAS TERHADAP KEPUASAN PENGGUNA JASA TRANSPORTASI UMUM TRANS BATAM,” vol. 4, no. 3, 2020.

A. Soimun, A. Prima Gilang Rupaka, N. Wayan Putu Sueni, and Hendrialdi, “Identifikasi Aksesibilitas Angkutan Umum Dan Terminal Kawasan Metropolitan Sarbagita,” j.keselam.transportasiStreet of, vol. 8, no. 1, pp. 62–76, Jun. 2021, doi: 10.46447/ktj.v8i1.309.

M. H. Tinambunan, A. Hasibuan, S. Wahyuni, and A. S. Wibowo, “KLASIFIKASI TINGKAT KEPUASAN MAHASISWA TERHADAP FASILITAS PADA FTIK UNIVERSITAS DHARMAWANGSA MEDAN DENGAN ALGORITHM NAIVE BAYES,” BN, vol. 6, no. 1, pp. 208–215, Jun. 2023, doi: 10.46576/bn.v6i1.3356.

E. Hartati, “Penggunaan Klasifikasi Sayur Segar dan Sayur Busuk Mengunakan Algorithm Support Vector Machine,” Jurnal Teknik Informatika dan Sistem Informasi, vol. Vol 07, No 03, pp. 678–687, Dec. 2020.

J. Riyono, A. L. R. Putri, and C. E. Pujiastuti, “Early Detection of COVID-19 Disease Based on Behavioral Parameters and Symptoms Using Algorithm-C5.0,” IJAIDM, vol. 6, no. 1, p. 47, Apr. 2023, doi: 10.24014/ijaidm.v6i1.22074.

N. Nurfitrayani, I. Islamiyah, and A. P. Azam Masa, “Penerapan Klasifikasi Algorithm C4.5 Dan Algorithm C5.0 Untuk Mengetahui Tingkat Kepuasan Mahasiswa Terhadap Website Sistem Informasi Terpadu Layanan Program Studi (SIPLO),” mib, vol. 7, no. 4, p. 1877, Oct. 2023, doi: 10.30865/mib.v7i4.6433.

N. M. Asih, J. H. Jaman, and Y. Umaidah, “Analisis Sentimen Terhadap Bantuan Kuota Internet Dari Kemendikbud Dimasa Covid-19 Menggunakan Algorithm C5.0,” INTECOMS, vol. 5, no. 2, pp. 1–9, Sep. 2022, doi: 10.31539/intecoms.v5i2.2793.

Novita Indriyani, Heru Satria Tambunan, and Zulia Almaida Siregar, “Analisis Faktor Kepuasan Konsumen Terhadap Produk Roti Pinkan Bakery & Cake dengan Algorithm C4.5,” JURRITEK, vol. 1, no. 2, pp. 76–90, Oct. 2022, doi: 10.55606/jurritek.v1i2.413.

L. S. Hasibuan, S. Nabila, N. Hudachair, and M. A. Istiadi, “Evaluation of F-Measure and Feature Analysis of C5.0 Implementation on Single Nucleotide Polymorphism Calling,” IJAIDM, vol. 1, no. 1, p. 1, Mar. 2018, doi: 10.24014/ijaidm.v1i1.4616.

D. Selywita and Hamdani, “SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN SUPPLIER OBAT MENGGUNAKAN METODE FUZZY TSUKAMOTO,” Jurnal Ilmiah SISFOTENIKA, vol. 3, no. 1, 2023.

M. A. Hidayatuloh, K. P. Kartika, and D. F. H. Permadi, “Implementasi Algorithm C4.5 Untuk Memprediksi Capaian Pembelajaran Daring (Studi Kasus Siswa MAN 3 Blitar),” algoritme, vol. 3, no. 1, pp. 33–47, Oct. 2022, doi: 10.35957/algoritme.v3i1.3292.

R. A. Manullang and F. A. Sianturi, “Penerapan Algorithm K-Nearest Neighbour Untuk Memprediksi Kelulusan Mahasiswa,” 2021.

J. Jasmir, X. Sika, M. Mulyadi, and R. Amelia, “Klasifikasi Kelayakan Pemberian Kredit Pada Calon Debitur Menggunakan Naïve Bayes,” Jur. Ris. Kom., vol. 9, no. 6, p. 1833, Dec. 2022, doi: 10.30865/jurikom.v9i6.5131.

A. H. Lubis, L. P. A. Lubis, and Sriani, “Sentiment analysis on twitter about the death penalty using the support vector machine method,” TEKNOSAINS: Jurnal Sains, Teknologi dan Informatika, vol. 11, no. 2, pp. 312–321, 2024, doi: 10.37373.

B. Sugianto and G. P. Utama, “IMPLEMENTASI ALGORITHM PATHFINDING DAN DECISION TREE DALAM PEMBUATAN VIDEO GAME BERGENRE THIRD PERSON SHOOTER,” SKANIKA Budi Luhur, vol. 4, no. 2, pp. 7–14, Jul. 2021, doi: 10.36080/skanika.v4i2.1825.

R. A. Putra, M. A. M. Putri, S. M. Sinaga, S. F. Octavia, and R. C. Rachman, “Implementation of Association Rules Algorithm to Identify Popular Topping Combinations in Orders,” PREDATECS, vol. 1, no. 2, pp. 95–101, Feb. 2024, doi: 10.57152/predatecs.v1i2.863.

M. R. Anugrah, N. A. Al-Qadr, N. Nazira, and N. Ihza, “Implementation of C4.5 and Support Vector Machine (SVM) Algorithm for Classification of Coronary Heart Disease,” PREDATECS, vol. 1, no. 1, pp. 20–25, Jul. 2023, doi: 10.57152/predatecs.v1i1.805.

A. I. Putri et al., “Implementation of K-Nearest Neighbors, Naïve Bayes Classifier, Support Vector Machine and Decision Tree Algorithms for Obesity Risk Prediction,” PREDATECS, vol. 2, no. 1, pp. 26–33, Apr. 2024, doi: 10.57152/predatecs.v2i1.1110.

M. S. Sungkar and M. T. Qurohman, “Penerapan Algorithm C5.0 Untuk Prediksi Kelulusan Pembelajaran Mahasiswa Pada Matakuliah Arsitektur Sistem Komputer,” mib, vol. 5, no. 3, p. 1166, Jul. 2021, doi: 10.30865/mib.v5i3.3116.

S. Sinaga and A. M. Husein, “Penerapan Algorithm Apriori dalam Data Mining untuk Memprediksi Pola Pengunjung pada Objek Wisata Kabupaten Karo,” JUTIKOMP, vol. 2, no. 1, pp. 49–54, Apr. 2019, doi: 10.34012/jutikomp.v2i1.461.

R. W. Pratiwi, S. F. H, D. Dairoh, D. I. Af’idah, Q. R. A, and A. G. F, “Analisis Sentimen Pada Review Skincare Female Daily Menggunakan Metode Support Vector Machine (SVM),” INISTA, vol. 4, no. 1, pp. 40–46, Dec. 2021, doi: 10.20895/inista.v4i1.387.

R. Pratiwi, M. N. Hayati, and S. Prangga, “PERBANDINGAN KLASIFIKASI ALGORITHM C5.0 DENGAN CLASSIFICATION AND REGRESSION TREE (STUDI KASUS : DATA SOSIAL KEPALA KELUARGA MASYARAKAT DESA TELUK BARU KECAMATAN MUARA ANCALONG TAHUN 2019),” BAREKENG, vol. 14, no. 2, pp. 273–284, Sep. 2020, doi: 10.30598/barekengvol14iss2pp273-284.

A. Damayanti, “SISTEM INFORMASI ADMINISTRASI KEPENDUDUKAN DENGAN ALGORITHM C5.0 UNTUK KLASIFIKASI PENERIMA PROGRAM KELUARGA HARAPAN (PKH) (STUDI KASUS: DESA PERNING, KECAMATAN JATIKALEN, KABUPATEN NGANJUK),” vol. 8, no. 1, 2024.




DOI: http://dx.doi.org/10.24014/ijaidm.v7i2.32785

Refbacks

  • There are currently no refbacks.


Office and Secretariat:

Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau

Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942

Click Here for Information


Journal Indexing:

Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti  | SINTA | Dimensions | ICI Index Copernicus 

IJAIDM Stats