ADDITIONAL MENU
Application of Canny Method to Detect Vehicle License Plate in Tanjung Balai City Government Mess Area
Abstract
Vehicles have a license plate that serves to be the identity of a vehicle. The shape of the plate is in the form of a piece of metal mounted on the vehicle as an official identity. Making a license plate or Motor Vehicle Number Sign in Indonesia is regulated in Government Regulation No. 60 of 2016 with a validity period of 5 years. The regulation is about the type and tariff of Non-Tax State Revenue (BNBP), and has been officially enacted on January 6, 2017, by replacing Government Regulation No.50 of 2010, quoted from the Kompas newspaper website. Image is one of the components of multimedia that plays an important role because it contains information in visual form. Images have more information that can be conveyed than in the form of text. An image is a collection of image elements (pixels) that as a whole record a scene through a visual sensory (camera). Canny edge detection can detect edges with a minimum error rate, canny edge detection has a difference with other operators because it uses a Gaussian Derivative Kernel that can refine the appearance of the image. Good location can minimize the distance of edge detection produced by processing, so that the location of the edge can be detected similar to the real edge. The accuracy value of applying this method reaches 99.88%-100%. And lastly, one response to single edge that can produce a single edge, not giving false edges.
Keywords
Canny Method; Digital Image; Gaussian Derivative Kernel; Hough Transformation; Vehicle License Plate
Full Text:
PDFReferences
Nursing Science Study Program, STIKes Ranah Minang Padang, Indonesia and Y. D. Tasri, “Identification of Signature Images with Edge Detection Canny,” JOMAse, vol. 66, no. 3, pp. 89–93, Nov. 2022, doi: 10.36842/jomase.v66i3.316.
D. A. P. Hapsari, W. K. Nofa, and S. Santoso, “Analisis Performa DeteksiObjekBergerak pada Algoritma Background Subtraction dan Algoritma Frame Difference,” icit, vol. 8, no. 1, pp. 98–107, Feb. 2022, doi: 10.33050/icit.v8i1.2177.
A. Akram, “Implementasi Metode Background Subtraction UntukMenghitungObjekKendaraandengan Video Berbasis OpenCV,” vol. 3, no. 1, 2023, doi: 10.22236/ate.v3i1.12253.
A. P. Cahyono and U. Budiyanto, “PenghitunganObjekBerdasarkanBerdasarkan Jenis KendaraanBermotor pada CCTV Lalu Lintas BerbasisPengolahan Citra Digital Menggunakan Metode Background Subtraction dan Blob Detection,” jtim, vol. 2, no. 2, pp. 92–99, Aug. 2020, doi: 10.35746/jtim.v2i2.98.
N. Agustina, K. Ibnutama, and D. H. Pane, “Penerapan Metode Background Subtraction UntukMendeteksiPenghuniKostMelalui Citra CCTV,” j. sist. inf. trig. dhar. JURSI TGD, vol. 2, no. 1, p. 99, Jan. 2023, doi: 10.53513/jursi.v2i1.5938.
M. RizkiPratama and I. Faqihuddin Hanif, “Implementasi Metode Canny dalamDeteksi Tepi pada Aplikasi OMR (Optical Mark Recognition) MenggunakanPengembanganSistem Waterfall,” Edunity, vol. 2, no. 2, pp. 267–283, Feb. 2023, doi: 10.57096/edunity.v2i2.60.
R. Winanjaya, A. D. Gs, and F. Anggraini, “PenerapanKombinasiAlgoritma Sobel dan Canny (SoCan) dalamIdentifikasi Citra InversiAlbatros Laysan,” bits, vol. 4, no. 1, Jun. 2022, doi: 10.47065/bits.v4i1.1660.
D. Wicaksono, D. P. Almeyda, I. M. M. Putra, and L. Malihatuningrum, “AnalisisPerbandingan Metode PraPemrosesan Citra untukDeteksi Tepi Canny pada Citra BerbagaiKondisi Jalan menggunakan Bahasa Pemrograman Python,” vol. 7, no. 1, 2024, doi: https://doi.org/10.34012/jutikomp.v7i1.3872.
Y. Marine, “Penerapan Algoritma Canny Untuk Deteksi Tepi Menggunakan Python Dan OpencV,” vol. 5, no. 1, 2023, doi: 10.59356/smart-techno.v5i1.73.
Ulmiah Muis, Yaumil Afwan, and Zahir Muhammad Adin, “Lokalisasi Plat Nomor Dengan Java Menggunakan Deteksi Tepi Canny Dan Filter Morfologi,” semnasdies, vol. 1, pp. 477–486, Jul. 2023, doi: 10.59562/semnasdies.v1i1.1039.
Y. Apridiansyah and J. R. Gumiri, “Penerapan Metode Background Subtraction UntukDeteksi Gerak Pada Kendaraan,” JUKOMIKA, vol. 4, no. 1, pp. 47–56, Jun. 2021, doi: 10.54650/jukomika.v4i1.355.
E. Holinda Sari, “Sistem Tracking Multi Object Yang Bergerak Di Jalan Raya Dengan Metode Frame Difference Dan Edge Detection,” JII, vol. 1, no. 9, pp. 994–1001, Sep. 2022, doi: 10.36418/jii.v1i9.456.
A. E. Rumetna, B. Y. Dwiandiyanta, and P. Ardanari, “Segmentasi pada Plat KendaraanMenggunakan Metode Deteksi Tepi Canny dan Thresholding,” JurnalInformatika Atma Jogja, vol. 1, no. 1, 2023.
P. D. Rinanda, D. N. Aini, T. A. Pertiwi, S. Suryani, and A. J. Prakash, “Implementation of Convolutional Neural Network (CNN) for Image Classification of Leaf Disease In Mango Plants Using Deep Learning Approach,” PREDATECS, vol. 1, no. 2, pp. 56–61, Feb. 2024, doi: 10.57152/predatecs.v1i2.872.
O. N. Putri, Implementasi Metode CNN Dalam Klasifikasi Gambar Jamur Pada Analisis Image Processing. Yogyakarta: Universitas Islam Indonesia, 2020.
M. I. K. Maulana, Sistem Monitoring Slot Parkir Mobil dengan Metode Subtraction Background berbasis Raspberry PI. Tegal: Politeknik Harapan Bersama, 2019.
G. J. N. Putri, “Metode Background Substraction Untuk Monitoring Obyek Bergerak Melalui Kamera Webcam,” vol. 3, no. 1, 2019.
I. W. Suartika, A. Y. Wijaya, and R. Soelaiman, “Klasifikasi Citra Menggunakan Convolutional Neural Network (CNN) pada Caltech 101,” vol. 05, no. 1, 2016.
Vrantika Br Samosir, Agung Mulyo Widodo, Nizirwan Anwar, BinastyaAnggaraSekti, and Nixon Erzed, “Identifikasi Outlier Menggunakan Teknik Data Mining Clustering UntukAnalisis Data Tracer Study Pada FakultasIlmuKomputer Universitas Esa Unggul,” ikraith-informatika, vol. 8, no. 1, pp. 162–174, Mar. 2024, doi: 10.37817/ikraith-informatika.v8i1.3211.
M. Muta’alimah, C. K. Zarry, A. Kurniawan, H. Hasysya, M. F. Firas, and N. Nadhirah, “Classifications of Offline Shopping Trends and Patterns with Machine Learning Algorithms,” PREDATECS, vol. 2, no. 1, pp. 18–25, Apr. 2024, doi: 10.57152/predatecs.v2i1.1099.
D. Hastari, S. Winanda, A. R. Pratama, N. Nurhaliza, and E. S. Ginting, “Application of Convolutional Neural Network ResNet-50 V2 on Image Classification of Rice Plant Disease,” PREDATECS, vol. 1, no. 2, Feb. 2024, doi: 10.57152/predatecs.v1i2.865.
A. A. Paturrahman, “AnalisisPengenalan Pola Daun Berdasarkan Fitur Canny Edge Detection dan Fitur GLCM Menggunakan Metode Klasifikasi k-Nearest Neighbor (kNN),” vol. 5, no. 1, 2021, doi: 10.29303/jcosine.v5i1.388.
DOI: http://dx.doi.org/10.24014/ijaidm.v7i2.32426
Refbacks
- There are currently no refbacks.
Office and Secretariat:
Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau
Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942
Journal Indexing:
Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti | SINTA | Dimensions | ICI Index Copernicus
IJAIDM Stats