Automatic Classifier of Road Condition and Early Warning System for Potholes

Jeremia Manurung, Mansur As, Hamidah Nasution, Said Iskandar Al Idrus, Kana Saputra S

Abstract


Damaged roads can have a negative impact on road users and can fatally cause accidents. One sign of a damaged road is the presence of holes in the road. This research aims to develop an Android application that can display the location of potholes and provide early warning to driver in Simalungun Regency - North Sumatra. This research implements the Convolutional Neural Network (CNN) algorithm using the transfer learning techniques on the pre-trained MobileNetV3 model for automatic classification of road conditions. The dataset used in the research consisted of 22.538 images which were divided into two classes, namely pothole and normal. This research uses dataset with a ratio of 60:20:20, 70:20:10 and 80:10:10. MobileNetV3 large variant with a dataset ratio of 60:20:20 shows the best value with an F1-Score of 0,9035. The model was further converted to Tensorflow Lite with an F1-Score of 0.8985. This research succeeded in implementing the trained and evaluated model along with early warning of potholes via audiovisual in Android application. Application functionality testing that is carried out using black box testing, showing that the application can run well.


Keywords


Android Application;Convolutional Neural Network; Early Warning System;Geographic Information System Pothole

Full Text:

PDF

References


BPS, Land Transportation Statistics 2022, 8th ed. Jakarta: BPS Indonesia, 2023. [Online]. Available: https://www.bps.go.id/id/publication/2023/11/27/5a5e4c75e4a25d44b1846446/statistik-transportasi-darat-2022.html

Pusiknas Polri, Jurnal Pusat Informasi Kriminal Nasional Tahun 2022, Edisi 2023. Jakarta: Pusiknas Polri, 2023.

Kementerian Komunikasi dan Informatika Republik Indonesia, “Rata-rata Tiga Orang Meninggal Setiap Jam Akibat Kecelakaan Jalan.” Accessed: Jan. 18, 2024. [Online]. Available: https://www.kominfo.go.id/index.php/content/detail/10368/rata-rata-tiga-orang-meninggal-setiap-jam-akibat-kecelakaan-jalan/0/artikel_gpr

D. Manik et al., Kabupaten Simalungun Dalam Angka 2023, 2023rd ed. Simalungun: BPS Kabupaten Simalungun, 2023.

P. Hidayatullah, F. Ferizal, R. H. Ramadhan, B. Qadarsih, and F. Mulyawan, “Pendeteksian Lubang Di Jalan Secara Semi-Otomatis,” Sigma-Mu, vol. 4, pp. 41–51, 2012.

Y. Sari, A. R. Baskara, P. B. Prakoso, and M. A. Rahman, “Application of Active Contour Model on Image Processing for Detection of Road Damage,” Jurnal Jalan Jembatan, vol. 38, no. 2, pp. 138–147, 2021.

R. Hartono, Y. Wibisono, and R. A. Sukamto, “Damropa (Damage Roads Patrol): Aplikasi Pendeteksi Jalan Rusak Memanfaatkan Accelerometer pada Smartphone,” Open Science Framework, no. October, pp. 1–6, 2017, doi: 10.31219/osf.io/yekpr.

L. Drajanta and M. Rivai, “Sistem Pendeteksi Tingkat Kekasaran Permukaan Jalan Menggunakan LIDAR dan Arduino Due,” Jurnal Teknik ITS, vol. 8, no. 1, pp. 8–11, 2019, doi: 10.12962/j23373539.v8i1.42463.

H. I. Syah, F. Pradana, and ..., “Pengembangan Sistem Pelaporan Kerusakan Jalan Otomatis Berbasis Sistem Embedded,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, no. 3, pp. 2187–2193, 2019, [Online]. Available: http://download.garuda.kemdikbud.go.id/article.php?article=871702&val=10384&title=Pengembangan Sistem Pelaporan Kerusakan Jalan Otomatis Berbasis Sistem Embedded

A. N. Utomo, “Analisa Data Ekstraksi Ciri Citra Momen Histogram dan Perbandingan Model Algoritma Klasifikasi Naive Bayes, Nearest Neighbor, Support Vector Machine, dan Decision Tree Pada Studi Kasus Citra Jalan Aspal Rusak Dan Jalan Aspal Tidak Rusak,” Incomtech, vol. 9, no. 2, pp. 8–18, 2020.

H. Maeda, Y. Sekimoto, T. Seto, T. Kashiyama, and H. Omata, “Road Damage Detection Using Deep Neural Networks with Images Captured Through a Smartphone,” Computer Aided Civil and Infrastructure Engineering, vol. 33, no. 12, pp. 1127–1141, 2018, doi: 10.1111/mice.12387.

A. Riyandi, T. Widodo, and S. Uyun, “Classification of Damaged Road Images Using the Convolutional Neural Network Method,” Telematika, vol. 19, no. 2, p. 147, 2022, doi: 10.31315/telematika.v19i2.6460.

B. Sasmito, B. H. Setiadji, and R. Isnanto, “Deteksi Kerusakan Jalan Menggunakan Pengolahan Citra Deep Learning di Kota Semarang,” Teknik, vol. 44, no. 1, pp. 7–14, 2023, doi: 10.14710/teknik.v44i1.51908.

I. R. Zunaidi, T. Afirianto, and K. C. Brata, “Sistem Pemetaan Geografis Jalan Rusak Berbasis Mobile Menggunakan Location Based Service Studi Kasus Kota Malang,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, no. 10, pp. 10216–10224, 2019.

D. W. S. Pratama and A. W. Utami, “Rancang Bangun Sistem Informasi Geografis Pemetaan Jalan Berlubang Wilayah Surabaya Selatan (Studi Kasus : PT.Binamarga Surabaya),” Jurnal Manajemen Informatika, vol. 6, no. 1, pp. 117–121, 2016.

M. I. Zulkipli, S. Agus, and Firdaus, “Sistem Informasi Geografis Berbasis Web Pemetaan Penanganan Jalan Berlubang Di Kota Banjarmasin,” 2022. [Online]. Available: http://eprints.uniska-bjm.ac.id/9618/

L. P. Sumirat, D. Cahyono, and A. A. Akbar, “Sistem Informasi Geografis Pelaporan Kerusakan Dan Perbaikan Jalan di Balai Besar Pelaksanaan Jalan Nasional VIII Berbasis Web Dan Android,” Jurnal Sistem Informasi dan Bisnis Cerdas, vol. 14, no. 1, pp. 27–36, 2021, doi: 10.33005/sibc.v14i1.2404.

H. B. Alim, “Sistem Informasi Geografis Jalan dan Jembatan di Kabupaten Wonogiri,” UIN SUNAN KALIJAGA, 2016.

J. C. F. da Silva, M. C. Silva, E. J. S. Luz, S. Delabrida, and R. A. R. Oliveira, “Using Mobile Edge AI to Detect and Map Diseases in Citrus Orchards,” Sensors, vol. 23, no. 4, 2023, doi: 10.3390/s23042165.

A. Jakaria and H. F. Pardede, “Comparison of Classification of Birds Using Lightweight Deep Convolutional Neural Networks,” Jurnal Elektronika dan Telekomunikasi, vol. 22, no. 2, p. 87, 2022, doi: 10.55981/jet.503.

S. Pérez Arteaga, A. L. Sandoval Orozco, and L. J. García Villalba, “Analysis of Machine Learning Techniques for Information Classification in Mobile Applications,” Applied Sciences (Switzerland), vol. 13, no. 9, 2023, doi: 10.3390/app13095438.

D. Luthfy, C. Setianingsih, and M. W. Paryasto, “Indonesian Sign Language Classification Using You Only Look Once,” e-Proceeding of Engineering, vol. 10, no. 1, pp. 454–459, 2023.

R. Oktafiani, A. Hermawan, and D. Avianto, “Pengaruh Komposisi Split data Terhadap Performa Klasifikasi Penyakit Kanker Payudara Menggunakan Algoritma Machine Learning,” Jurnal Sains dan Informatika, vol. 9, no. 1, pp. 19–28, 2023, doi: 10.34128/jsi.v9i1.622.

Y. Prabhu and N. Seliya, “A CNN-Based Automated Stuttering Identification System,” in 2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA), 2022, pp. 1601–1605. doi: 10.1109/ICMLA55696.2022.00247.

S. Lasniari, J. Jasril, S. Sanjaya, F. Yanto, and M. Affandes, “Pengaruh Hyperparameter Convolutional Neural Network Arsitektur ResNet-50 Pada Klasifikasi Citra Daging Sapi dan Daging Babi,” Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI), vol. 5, no. 3, pp. 474–481, 2022, doi: 10.32672/jnkti.v5i3.4424.

M. Naufal, “Pengaruh Hubungan Geometrik Jalan Raya dengan Tingkat Kecelakaan Ruas Jalan Lintas Sumatera, Aceh, Bireuen, Cot Iju, Paya Meneng, Sp 4 Glee Kapai, Simpang Kameng, Mese,” Universitas Muhammadiyah Sumatera Utara, Medan, 2018. Accessed: Jun. 21, 2024. [Online]. Available: http://repository.umsu.ac.id/bitstream/handle/123456789/8422/SKRIPSI%20MUHAMMAD%20NAUFAL.pdf

M. Bach, A. Werner, and M. Palt, “The proposal of undersampling method for learning from imbalanced datasets,” in Procedia Computer Science, Elsevier B.V., 2019, pp. 125–134. doi: 10.1016/j.procs.2019.09.167.

M. Agil Izzulhaq and Alamsyah, “Penerapan Algoritma Convolutional Neural Network Arsitektur ResNet50V2 Untuk Mengidentifikasi Penyakit Pneumonia,” Indonesian Journal of Mathematics and Natural Sciences, vol. 47, no. 1, pp. 12–22, 2024, [Online]. Available: https://journal.unnes.ac.id/journals/JM/index

T. Bayu Sasongko and A. Amrullah, “Analisis Efek Augmentasi Dataset Dan Fine Tune Pada Algoritma Pre-trained Convolutional Neural Network (CNN),” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 10, no. 4, pp. 763–768, 2023, doi: 10.25126/jtiik.2023106583.

H. Kusumah, M. R. Nurholik, C. P. Riani, I. Riyan, and N. Rahman, “Deep Learning for Pothole Detection on Indonesian Roadways,” Journal Sensi, vol. 9, no. 2, pp. 175–186, 2023.




DOI: http://dx.doi.org/10.24014/ijaidm.v8i1.31866

Refbacks

  • There are currently no refbacks.


Office and Secretariat:

Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau

Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942

Click Here for Information


Journal Indexing:

Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti  | SINTA | Dimensions | ICI Index Copernicus 

IJAIDM Stats