Identification of Little Tuna Species Using Convolutional Neural Networks (CNN) Method and ResNet-50 Architecture

Diah Ayu Pusparani, Made Windu Antara Kesiman, Kadek Yota Ernanda Aryanto

Abstract


Indonesia is home to a vast array of biodiversity, including various species of little tuna. However, the process of identifying little tuna species is still challenging due to their diversity. The Indonesian Society and Fisheries Foundation (MDPI), which has the task of collecting fisheries data manually, is prone to significant identification errors. Therefore, the author proposes the utilization of Deep Learning, a Machine Learning method due to its ability to model various complex data such as images or pictures and sounds. This approach can facilitate the identification process of little tuna. In this research, the Resnet-50 architecture is utilised in the modelling process with the original dataset of 500 images. In this study, several test scenarios were also applied. The best results obtained are global accuracy of 91% and matrix accuracy value of 95%. These results were obtained using an augmented dataset with some parameter adjustments to the model built. With these good accurate identification, the MDPI Foundation is expected to better manage fisheries data and use it to support sustainable fisheries management.

Keywords


CNN; Deep Learning; Identification; Little Tuna; Resnet-50

Full Text:

PDF

References


S. Ikbal, P. Andi, and M. I. Andi, “Keanekaragaman Jenis Ikan Hasil Tangkapan Nelayan Di Tempat Pelelangan Ikan (TPI) Paotere Makassar,” Kendari, Oct. 2021.

R. Faizah, U. Chodrijah, B. I. Prisantoso, J. J. Pogonoski, M. Puckridge, and S. J. M. Blaber, Market Fishes of Indonesia. 2013.

I. Suhardin, A. Patombongi, and I. A. Muhammad, “Mengidentifikasi Jenis Tanaman Berdasarkan Citra Daun Menggunakan Algoritma Convolutional Neural Network,” vol. 6, no. 2, 2021.

E. P. I. W. Suartika, Y. W. Arya, and S. Rully, “Klasifikasi Citra Menggunakan Convolutional Neural Network (Cnn) pada Caltech 101,” JURNAL TEKNIK ITS, vol. 5, No. 1, pp. 2301–9271, Mar. 2016.

B. Falahkhi, E. F. Achmal, M. Rizaldi, R. Rizki, and N. Yudistira, “Perbandingan Model AlexNet dan ResNet dalam Klasifikasi Citra Bunga Memanfaatkan Transfer Learning,” Ilmu Komputer Agri-Informatika, vol. 9, pp. 70–78, 2022, [Online]. Available: http://journal.ipb.ac.id/index.php/jika

K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” Dec. 2015, [Online]. Available: http://arxiv.org/abs/1512.03385

A. Ishak, A. A. Willdan, A. R. Ayang, Lukman, and T. Nabila, “Klasifikasi Tiga Genus Ikan Karang Menggunakan Convolutional Neural Network,” J. Ilmu dan Teknologi Kelautan Tropis, vol. 2, no. 205–216, pp. 1–12, 2022, doi: 10.29244/jitkt.v14i1.33633.

Elvin and L. Chairisni, “Klasifikasi Citra Ikan Menggunakan Convolutional Neural Network,” Jakarta, 2022.

F. Septian, E. Puspa, and F. L. Gibtha, “Implementasi Convolutional Neural Network Untuk Identifikasi Ikan Air Tawar,” SEMNATI, vol. 2, no. Vol 2 (2019): SEMNATI 2019, pp. 163–167, 2019.

E. Prasetyo, R. Purbaningtyas, R. A. Dimas, E. T. Prabowo, A. I. Ferdiansyah, and P. Korespondensi, “Perbandingan Convolutional Neural Network untuk Klasifikasi Kesegaran Ikan Bandeng pada Citra Mata,” vol. 8, no. 3, pp. 601–608, 2021, doi: 10.25126/jtiik.202184369.

A. Y. M. Resa, P. Sukmasetya, R. H. Abul, and D. Sasongko, “Pengaruh Data Preprocessing terhadap Imbalanced Dataset pada Klasifikasi Citra Sampah menggunakan Algoritma Convolutional Neural Network,” Building of Informatics, Technology and Science (BITS), vol. 4, no. 3, Dec. 2022, doi: 10.47065/bits.v4i3.2575.

R. S. Indah, “Implementasi Convolutional Neural Network (CNN) untuk Klasifikasi Citra Benih Kacang Hijau Berkualitas,” Universitas Muhamadiyah Semarang, Semarang, 2021.

G. M. Fadli, “Implementasi Augmentasi Citra pada Suatu Dataset,” Bandung, 2023.

M. Ezar, A. Rivan, D. Alwyn, and G. Riyadi, “Perbandingan Arsitektur LeNet dan AlexNet Pada Metode Convolutional Neural Network Untuk Pengenalan American Sign Language,” 2021. [Online]. Available: https://jurnal.pcr.ac.id/index.php/jkt/

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” 2017. [Online]. Available: http://code.google.com/p/cuda-convnet/




DOI: http://dx.doi.org/10.24014/ijaidm.v8i1.31620

Refbacks

  • There are currently no refbacks.


Office and Secretariat:

Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau

Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942

Click Here for Information


Journal Indexing:

Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti  | SINTA | Dimensions | ICI Index Copernicus 

IJAIDM Stats