ADDITIONAL MENU
Classification of Big Data Stunting Using Support Vector Regression Method at Stella Maris Medan Maternity Hospital
Abstract
This study aims to classify big data related to stunting using the Support Vector Regression (SVR) method at Stella Maris Maternity Hospital, Medan. Stunting, a condition of impaired growth in children due to chronic malnutrition and repeated infections, affects physical and cognitive development. With increasing health data, big data processing methods are essential for accurate information. SVR was chosen for handling high-dimensional and non-linear data, providing precise results. The study uses medical information, nutritional history, and socio-economic factors collected from hospital patients. The research process includes data collection, pre-processing to address missing values and outliers, normalization, and SVR application. Final results use SVR with Voting Classifier combining Support Vector Classifier (SVC), Random Forest (RF), and Gradient Boosting (GB), achieving an accuracy of 91.67%. This approach effectively identifies main stunting factors, aiding clinical decision-making and intervention programs. The study showcases big data and machine learning's potential in healthcare, serving as a model for improving health services and monitoring children's health conditions.
Keywords
Big Data; Medical; Stunting; Support Vector Regression; Voting Classifier
Full Text:
PDFReferences
S. Angriani, N. Jalil, S. Aminah, and N. Agus Salim, “Childhood Stunting: Analysis Affecting Children’s Stunting In Sulawesi,” 2021.
T. Beal, A. Tumilowicz, A. Sutrisna, D. Izwardy, and L. M. Neufeld, “A review of child stunting determinants in Indonesia,” Maternal and Child Nutrition, vol. 14, no. 4. 2018. doi: 10.1111/mcn.12617.
S. Processing, “Penyelenggaraan Percepatan Penurunan Stunting,” Signal Processing, 2009.
M. de Onis and F. Branca, “Childhood stunting: A global perspective,” Maternal and Child Nutrition, vol. 12. 2016. doi: 10.1111/mcn.12231.
T. Siswati, B. A. Paramashanti, N. Pramestuti, and L. Waris, “A POOLED DATA ANALYSIS TO DETERMINE RISK FACTORS OF CHILDHOOD STUNTING IN INDONESIA,” Journal of Nutrition College, vol. 12, no. 1, 2023, doi: 10.14710/jnc.v12i1.35413.
J. T. Samudra, R. Rosnelly, and Z. Situmorang, “Comparative Analysis of SVM and Perceptron Algorithms in Classification of Work Programs,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 22, no. 2, 2023, doi: 10.30812/matrik.v22i2.2479.
M. H. Bazrkar and X. Chu, “Development of category-based scoring support vector regression (CBS-SVR) for drought prediction,” Journal of Hydroinformatics, vol. 24, no. 1, 2022, doi: 10.2166/HYDRO.2022.104.
Y. Zhang, “Support vector machine classification algorithm and its application,” in Communications in Computer and Information Science, 2012. doi: 10.1007/978-3-642-34041-3_27.
C. Cortes and V. Vapnik, “Support-Vector Networks,” Machine Learning, vol. 20, no. 3, 1995, doi: 10.1023/A:1022627411411.
J. C. Platt, “Fast Training of Support Vector Machines Using Sequential Minimal Optimization,” in Advances in Kernel Methods, 2022. doi: 10.7551/mitpress/1130.003.0016.
L. Breiman, “Random forests. Machine Learning,” Kluwer Academic Publishers. Manufactured in The Netherlands., vol. 45(1), 2001.
J. H. Friedman, “Greedy function approximation: A gradient boosting machine,” Annals of Statistics, vol. 29, no. 5, 2001, doi: 10.1214/aos/1013203451.
L. I. Kuncheva, Combining Pattern Classifiers. 2004. doi: 10.1002/0471660264.
H. Bhavsar and M. H. Panchal, “A Review on Support Vector Machine for Data Classification,” International Journal of Advanced Research in Computer Engineering & Technology, vol. 1, no. 10, 2012.
V. K. Chauhan, K. Dahiya, and A. Sharma, “Problem formulations and solvers in linear SVM: a review,” Artificial Intelligence Review, vol. 52, no. 2. 2019. doi: 10.1007/s10462-018-9614-6.
M. Belgiu and L. Drăgu, “Random forest in remote sensing: A review of applications and future directions,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 114. 2016. doi: 10.1016/j.isprsjprs.2016.01.011.
V. F. Rodriguez-Galiano, B. Ghimire, J. Rogan, M. Chica-Olmo, and J. P. Rigol-Sanchez, “An assessment of the effectiveness of a random forest classifier for land-cover classification,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 67, no. 1, 2012, doi: 10.1016/j.isprsjprs.2011.11.002.
A. Chaudhary, S. Kolhe, and R. Kamal, “An improved random forest classifier for multi-class classification,” Information Processing in Agriculture, vol. 3, no. 4, 2016, doi: 10.1016/j.inpa.2016.08.002.
C. Bentéjac, A. Csörgő, and G. Martínez-Muñoz, “A comparative analysis of gradient boosting algorithms,” Artificial Intelligence Review, vol. 54, no. 3, 2021, doi: 10.1007/s10462-020-09896-5.
R. Blagus and L. Lusa, “Gradient boosting for high-dimensional prediction of rare events,” Computational Statistics and Data Analysis, vol. 113, 2017, doi: 10.1016/j.csda.2016.07.016.
M. S. Islam Khan, N. Islam, J. Uddin, S. Islam, and M. K. Nasir, “Water quality prediction and classification based on principal component regression and gradient boosting classifier approach,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 8, 2022, doi: 10.1016/j.jksuci.2021.06.003.
C. Y. Yeh, C. W. Huang, and S. J. Lee, “A multiple-kernel support vector regression approach for stock market price forecasting,” Expert Systems with Applications, vol. 38, no. 3, 2011, doi: 10.1016/j.eswa.2010.08.004.
A. Paniagua-Tineo, S. Salcedo-Sanz, C. Casanova-Mateo, E. G. Ortiz-García, M. A. Cony, and E. Hernández-Martín, “Prediction of daily maximum temperature using a support vector regression algorithm,” Renewable Energy, vol. 36, no. 11, 2011, doi: 10.1016/j.renene.2011.03.030.
A. W. M. Gaffar, Sugiarti, Dewi Widyawati, Andi Muhammad Kemai Arief Hidayat Paharuddin, and Andi Vania Anastasia, “Spatial Prediction of Stunting Incidents Prevalence Using Support Vector Regression Method,” Indonesian Journal of Data and Science, vol. 4, no. 2, 2023, doi: 10.56705/ijodas.v4i2.68.
G. Kunapuli, Ensemble Methods for Machine Learning. 2023.
A. Salini, U. Jeyapriya, S. M. College, and S. M. College, “A Majority Vote Based Ensemble Classifier for Predicting Students Academic Performance,” International Journal of Pure and Applied Mathematics, vol. 118, no. 24, 2018.
X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma, “A survey on ensemble learning,” Frontiers of Computer Science, vol. 14, no. 2. 2020. doi: 10.1007/s11704-019-8208-z.
I. D. Mienye and Y. Sun, “A Survey of Ensemble Learning: Concepts, Algorithms, Applications, and Prospects,” IEEE Access, vol. 10. 2022. doi: 10.1109/ACCESS.2022.3207287.
S. Mishra et al., “Multivariate Statistical Data Analysis- Principal Component Analysis (PCA),” International Journal of Livestock Research, vol. 7, no. 5, 2017.
N. v. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic minority over-sampling technique,” Journal of Artificial Intelligence Research, vol. 16, 2002, doi: 10.1613/jair.953.
Kelvin, R., Purba, R., & Halim, A. (2022). Stock Price Prediction Using XCEEMDAN-Bidirectional LSTM-Spline. Indonesian Journal of Artificial Intelligence and Data Mining (IJAIDM), 5(1), 1-12. https://doi.org/10.24014/ijaidm.v5i1.14424.
Kelvin, Sinaga, F. M., Winardi, S., & Susmanto. (2024). Exploring New Frontiers: XCEEMDAN, Bidirectional LSTM, Attention Mechanism, and Spline in Stock Price Forecasting. Indonesian Journal of Artificial Intelligence and Data Mining (IJAIDM), 7(2), 384-391. https://dx.doi.org/10.24014/ijaidm.v7i2.29649.
DOI: http://dx.doi.org/10.24014/ijaidm.v7i2.31112
Refbacks
- There are currently no refbacks.
Office and Secretariat:
Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau
Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942
Journal Indexing:
Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti | SINTA | Dimensions | ICI Index Copernicus
IJAIDM Stats