Web-Based Movie Recommendation System Using Content-Based Filtering and Cosine Similarity

Zico Fachreza Meillano, Donni Richasdy, Hasmawati Hasmawati

Abstract


Movie are one of the most popular entertainment media among people and are often chosen as activities during weekend holidays. As time goes by, world cinema continues to develop with various interesting and entertaining genres, stories and visuals. Because film is one of the entertainment media that can relieve stress from work assignments or lectures and now film production is also growing so that more and more films are being produced until finally people are confused about choosing the film they will watch. To resolve the obstacles faced, movie information is needed that can help people find movies that suit user preferences, so users need a system that can recommend movies. In this research, the author used the content-based filtering method to find movie recommendations. The substance utilizedis the movie genre. The Check Vectorization calculation is utilized to discover the term/word weight values in each record and after that these values are utilized as factors within the Cosine closeness to discover similitudes between archives.As a result of this last project the system can generate a kind of recommendations for the 10 most similar movies. The test results from this final project are that the system is running well and is reliable with an alpha test result of 100%, and a reliability test result of 0.7.

Keywords


Content-Based Filtering; Cosine Similarity; Count Vectorization; Movie Recommendation System

Full Text:

PDF

References


Saveetha. D, G. Maragatham. Movie Rating System based on Blockchain. IEEE 2021 International Conference on Computer Communication and Informatics (ICCCI). 2021: 1–3.

Press Room - IMDb. Accessed: Jan. 24, 2024. [Online]. Available: https://www.imdb.com/pressroom/stats/

F. Ricci, L. Rokach, and B. Shapira. Introduction to Recommender Systems Handbook. Recommender Systems Handbook. Boston. MA: Springer US. 2011: 1–35.

Institute of Electrical and Electronics Engineers and Hindusthan Institute of Technology. Proceedings of the International Conference on Electronics and Sustainable Communication Systems. ICESC. 2020 : 02-04.

T. Rutkowski, J. Romanowski, P. Woldan, P. Staszewski, R. Nielek, and L. Rutkowski. A Content-Based Recommendation System Using Neuro-Fuzzy Approach. 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). 2018: pp. 1–8.

F. Fessahaye et al.. T-RECSYS: A Novel Music Recommendation System Using Deep Learning. 2019 IEEE International Conference on Consumer Electronics (ICCE). 2019: 1–6.

T. Badriyah et al.. Konferensi Nasional Sistem Informasi 2018 STMIK Atma Luhur Pangkalpinang. 2018.

Y. Hu and M. Ogihara. NEXTONE PLAYER: A MUSIC RECOMMENDATION SYSTEM BASED ON USER BEHAVIOR. 2011.

T. Badriyah et al.. Konferensi Nasional Sistem Informasi 2018 STMIK Atma Luhur Pangkalpinang. 2018.

Y. Hu and M. Ogihara. NEXTONE PLAYER: A MUSIC RECOMMENDATION SYSTEM BASED ON USER BEHAVIOR. 2011.

R. R. M. Putri, R. Y. Herlambang, and R. C. Wihandika. Implementasi Metode K-Nearest Neighbour Dengan Pembobotan TF.IDF.ICF Untuk Kategorisasi Ide Kreatif Pada Perusahaan. Jurnal Teknologi Informasi dan Ilmu Komputer. 2017; 4(2): 97.

L. Ma, Q. Pei, L. Zhou, H. Zhu, L. Wang, and Y. Ji. Federated Data Cleaning: Collaborative and Privacy-Preserving Data Cleaning for Edge Intelligence. IEEE Internet Things J. 2021; 8(8): 6757-6770.

Y.-T. Lin, A. E. Newhall, T. F. Duda, P. F. J. Lermusiaux, and P. J. Haley. Merging Multiple-Partial-Depth Data Time Series Using Objective Empirical Orthogonal Function Fitting. IEEE Journal of Oceanic Engineering. 2010; 35(4): 710-721.

M. Zaynurroyhan, A. Pambudi, and S. Artikel. Jurnal Explore IT|8 Perbandingan TF-IDF dengan Count Vectorization Dalam Content-Based Filtering Rekomendasi Mobil Listrik INFO ARTIKEL ABSTRAK Katakunci: Content-Based Filtering K-Nearest Neighbor Mobil Listrik.

C. S. D. Prasetya. Sistem Rekomendasi Pada E-Commerce Menggunakan K-Nearest Neighbor. Jurnal Teknologi Informasi dan Ilmu Komputer. 2017; 4(3): 194.

S. Zhu, J. Wu, H. Xiong, and G. Xia. Scaling up top-K cosine similarity search. Data Knowl Eng. 2011; 70(1): 60-83.

Ş. ÖZTÜRK BİRİM and A. TÜMTÜRK. A Novel Algorithmic Similarity Measure for Collaborative Filtering: A Recommendation System Based on Rating Distances. Academic Platform Journal of Engineering and Smart Systems. 2022; 10(1): 57-69.

M. Ade Romadhony. Analisis dan Implementasi House Recommendation Menggunakan Content-Based Recommender System.

J. W. Duran and J. J. Wiorkowski. Estimating the correctness of computer programs. Inf Sci (N Y). 1982; 26(2): 141-153.

J. Zhang, X. Ma, and Y. Zhao. Reliability Demonstration for Long-Life Products Based on Hardened Testing Method and Gamma Process. IEEE Access. 2017; 5: 19322-19332.




DOI: http://dx.doi.org/10.24014/ijaidm.v7i1.27390

Refbacks

  • There are currently no refbacks.


Office and Secretariat:

Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau

Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942

Click Here for Information


Journal Indexing:

Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti  | SINTA | Dimensions | ICI Index Copernicus 

IJAIDM Stats