ADDITIONAL MENU
Performance Comparison of Decision Tree J48, CART, and Naïve Bayes Algorithms for Predicting Chronic Kidney Disease
Abstract
Chronic Kidney Disease could be a worldwide issue that proceeds to extend with high treatment costs. Accurate diagnosis is essential for managing this disease. There is a requirement for a technique to anticipate chronic kidney disease, with prevalent use being made of Decision Tree J48, Naive Bayes, and CART algorithms which offer benefits like swift computation, ease of use, and high precision. The researchers aimed to determine the comparison results of Decision Tree J48, CART, and Naive Bayes algorithms for predicting chronic kidney disease. From the research findings, it was concluded that the CART algorithm had the highest accuracy rate of 97.25% in predicting chronic kidney disease, compared to the J48 Decision Tree algorithm and the Naïve Bayes algorithm with accuracy rates of 96.5% and 93.5% respectively. The CART algorithm can be utilized by pathologists to develop a program for predicting chronic kidney disease.
Keywords
Chronic Kidney Disease; Decision Tree J48; CART; Naïve Bayes
Full Text:
PDFReferences
A. Aditya, A. Udiyono, L. Dian Saraswati, and H. Setyawan, “SCREENING FUNGSI GINJAL SEBAGAI PERBAIKAN OUTCOME PENGOBATAN PADA PENDERITA DIABETES MELLITUS TIPE II (Studi di Wilayah Kerja Puskesmas Ngesrep),” J. Kesehat. Masy., vol. 6, no. 1, pp. 191–199, 2018, [Online]. Available: http://ejournal3.undip.ac.id/index.php/jkm
A. A. Eka Cahyani, D. Prasetya, M. F. Abadi, and D. Prihatiningsih, “Gambaran Diagnosis Pasien Pra-Hemodialisa Di Rsud WangayaTahun 2020-2021,” J. Ilm. Hosp., vol. 11, no. 1, pp. 32–40, 2022.
Kemenkes RI, “Laporan Riskesdas 2018 Kementrian Kesehatan Republik Indonesia,” Laporan Nasional Riskesdas 2018, vol. 53, no. 9. pp. 154–165, 2018. [Online]. Available: http://www.yankes.kemkes.go.id/assets/downloads/PMK No. 57 Tahun 2013 tentang PTRM.pdf
A. Thofiq Madani, H. Sunandar, and S. Adelina Hutabara, “Bulletin of Data Science Diagnosis Dan Prediksi Penyakit Ginjal Kronis Dengan Menggunakan Pendekatan Stacked-Generalization,” Media Online, vol. 2, no. 1, pp. 35–43, 2022, [Online]. Available: https://ejurnal.seminar-id.com/index.php/bulletinds
B. Baskoro, S. Sriyanto, and L. S. Rini, “Prediksi Penerima Beasiswa dengan Menggunakan Teknik Data Mining di Universitas Muhammadiyah Pringsewu,” Pros. Semin. Nas. …, pp. 87–94, 2021, [Online]. Available: https://jurnal.darmajaya.ac.id/index.php/PSND/article/view/2918
M. Kafil, “Penerapan Metode K-Nearest Neighbors Untuk Prediksi Penjualan Berbasis Web Pada Boutiq Dealove Bondowoso,” JATI (Jurnal Mhs. Tek. Inform., vol. 3, no. 2, pp. 59–66, 2019, doi: 10.36040/jati.v3i2.860.
N. S. Pakpahan, “Implementasi Data Mining Menggunakan Algoritma J48 Dalam Menentukan Pola Itemset Belanja Pembeli (Study Kasus: Swalayan Brastagi Medan),” J. Comput. Informatics Res., vol. 1, no. 1, pp. 7–13, 2021, [Online]. Available: https://journal.fkpt.org/index.php/comforch/article/view/111%0Ahttps://journal.fkpt.org/index.php/comforch/article/download/111/83
S. Agustiani, A. Mustopa, A. Saryoko, W. Gata, and S. K. Wildah, “Penerapan Algoritma J48 Untuk Deteksi Penyakit Tiroid,” Paradig. - J. Komput. dan Inform., vol. 22, no. 2, pp. 153–160, 2020, doi: 10.31294/p.v22i2.8174.
M. Defriani and I. Jaelani, “Algoritma J48 Dan Logistic Model Tree Untuk Memprediksi Predikat Kelulusan Mahasiswa: Studi Kasus STT XYZ,” INTECOMS J. Inf. Technol. Comput. Sci., vol. 3, no. 2, pp. 129–140, 2020, doi: 10.31539/intecoms.v3i2.1478.
I. W. Misshuari and Chairunisah, “Penerapan Metode Classification and Regression Trees (Cart) Untuk Menentukkan Faktor-Faktor Yang Mempengaruhi Pembayaran Kredit Oleh Nasabah Di Pt Bprs Gebu Prima Medan,” Karismatika, vol. 6, no. 3, pp. 10–20, 2020.
S. Susanto and D. Suryadi, Pengantar Data Mining – Menggali Pengetahuan dari Bongkahan Data. ANDI, 2010.
H. M. Zhafran, I. T. Bandung, J. G. Bandung, and A. Graf, “Aplikasi Algoritma CART dalam Klasifikasi Jamur Berdasarkan Kelayakan Makan,” 2023.
M. F. Rizalno, A. Johar, and F. F. Coastera, “Analisis Prediksi Masa Studi Mahasiswa Menggunakan Metode Decision Tree Dengan Penerapan Algoritme Cart (Classification and Regression Trees) (Studi Kasus Data Alumni Fakultas Teknik Universitas Bengkulu),” Rekursif J. Inform., vol. 10, no. 1, pp. 96–106, 2022, doi: 10.33369/rekursif.v10i1.21362.
M. Idris, “Implementasi Data Mining Dengan Algoritma Naive Bayes Untuk Memprediksi Angka Kelahiran,” J. Pelita Inform., vol. 7, no. 3, pp. 421–428, 2019, [Online]. Available: https://ejurnal.stmik-budidarma.ac.id/index.php/pelita/article/view/1154
J. Han, M. Kamber, and J. Pei, Data Mining Concepts and Techniques 3rd Edition. San Fransisco: Morgan Kauffman, 2012.
F. Solikhah, M. Febianah, A. L. Kamil, W. A. Arifin, and Shelly Janu Setyaning Tyas, “Analisis Perbandingan Algoritma Naive Bayes Dan C.45 Dalam Klasifikasi Data Mining Untuk Memprediksi Kelulusan,” Tematik, vol. 8, no. 1, pp. 96–103, 2021, doi: 10.38204/tematik.v8i1.576.
T. Arifin and D. Ariesta, “Prediksi Penyakit Ginjal Kronis Menggunakan Algoritma Naive Bayes Classifier Berbasis Particle Swarm Optimization,” J. Tekno Insentif, vol. 13, no. 1, pp. 26–30, 2019, doi: 10.36787/jti.v13i1.97.
S. N. Chotimah, “KLASIFIKASI DIAGNOSIS PENYAKIT GINJAL KRONIS DENGAN Organization ( WHO ) yang dihimpun tahun Repository ( Almustafa , 2021 ). Penelitian lain Component Analysis ( Islam dkk ., 2023 ) . pernah dilakukan dengan menerapkan konsep,” vol. 4, no. 1, pp. 8–15, 2023.
I. G. A. Mahardika Pratama, L. G. Astuti, I. M. Widiartha, I. G. N. A. Cahyadi Putra, C. R. Adi Pramartha, and I. D. M. B. Atmaja Darmawan, “Diagnosis Penyakit Ginjal Kronis dengan Algoritma C4.5, K-Means dan BPSO,” JELIKU (Jurnal Elektron. Ilmu Komput. Udayana), vol. 10, no. 4, p. 371, 2022, doi: 10.24843/jlk.2022.v10.i04.p07.
Safuan Safuan, “Deteksi Penyakit Gagal Ginjal Kronis Menggunakan Algoritma ID3,” Elkom J. Elektron. dan Komput., vol. 13, no. 1, pp. 8–17, 2020, doi: 10.51903/elkom.v13i1.136.
DOI: http://dx.doi.org/10.24014/ijaidm.v7i1.26472
Refbacks
- There are currently no refbacks.
Office and Secretariat:
Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau
Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942
Journal Indexing:
Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti | SINTA | Dimensions | ICI Index Copernicus
IJAIDM Stats