Implementation of Data Mining for Predicting Student Graduation Using the K-Nearest Neighbor Algorithm at Jambi Muhammadiyah University

Shandy Amandha, Hetty Rohayani, Kevin Kurniawansyah

Abstract


Graduation is one of the assessment items in the accreditation process of a tertiary institution. So that if students graduate on time, it will help assess the accreditation of a tertiary institution. The method used is K-Nearest Neighbor (K-NN). This method is used to classify objects based on learning data closest to the object. This research aims to predict the graduation of Jambi Muhammadiyah University students, whether it is worth graduating on time or not graduating on time. In research using K-NN to predict student graduation, the results were that the K-NN approach in this study produced an accuracy value of 93.33%. The result is testing with a value of K = 5 using 50 training data for Jambi Muhammadiyah University students who have graduated in 2022; then data testing is tested with training data that has been tested before, 4 students who graduated not on time and who graduated on time were 46 students.

Keywords


Classification; Data Mining; Graduation; Higher Education; K-Nearest Neighbor

Full Text:

PDF

References


E. Purwaningsih and E. Nurelasari, “Penerapan K-Nearest Neighbor Untuk Klasifikasi Tingkat Kelulusan Pada Siswa,” Syntax J. Inform., vol. 10, no. 01, pp. 46–56, 2021, doi: 10.35706/syji.v10i01.5173.

S. Sumarlin and D. Anggraini, “Implementasi K-Nearest Neighbord Pada Rapidminer Untuk Prediksi Kelulusan Mahasiswa,” High Educ. Organ. Arch. Qual. J. Teknol. Inf., vol. 10, no. 1, pp. 35–41, 2018, doi: 10.52972/hoaq.vol10no1.p35-41.

N. Khasanah, A. Salim, N. Afni, R. Komarudin, and Y. I. Maulana, “Prediksi Kelulusan Mahasiswa Dengan Metode Naive Bayes,” Technol. J. Ilm., vol. 13, no. 3, p. 207, 2022, doi: 10.31602/tji.v13i3.7312.

T. Nasution, “Implementasi Algoritma K-Nearest Neighbor Untuk Penentuan Kelulusan Mahasiswa Tepat Waktu,” J. Perangkat Lunak, vol. 2, no. 1, pp. 1–14, 2020.

K. Kartarina, N. K. Sriwinarti, and N. luh P. Juniarti, “Analisis Metode K-Nearest Neighbors (K-NN) Dan Naive Bayes Dalam Memprediksi Kelulusan Mahasiswa,” JTIM J. Teknol. Inf. dan Multimed., vol. 3, no. 2, pp. 107–113, 2021, doi: 10.35746/jtim.v3i2.159.

Humas Um Jambi, “Gelar Wisuda ke IV, Universitas Muhammadiyah Jambi Sarjanakan 327 Mahasiswa,” Website, 2023. https://umjambi.ac.id/gelar-wisuda-ke-iv-universitas-muhammadiyah-sarjanakan-327-mahasiswa/

I. L. Putra, “Implementasi Algoritma Particle Swarm Optimization(Pso) Dan K-Nearest Neighbor(K-Nn) Dalam Memprediksi Keberhasilan Anak Smk Mendapatkan Kerja,” Technol. J. Ilm., vol. 13, no. 4, p. 339, 2022, doi: 10.31602/tji.v13i4.8167.

S. Nasional, T. Elektro, S. Informasi, and T. Informatika, “Prediksi Kelulusan Mahasiswa dengan Metode K-Nearest Neighbor pada Jurusan Sistem Informasi Institut XYZ,” pp. 199–206, 2023.

N. Hidayati and A. Hermawan, “K-Nearest Neighbor (K-NN) algorithm with Euclidean and Manhattan in classification of student graduation,” J. Eng. Appl. Technol., vol. 2, no. 2, pp. 86–91, 2021, doi: 10.21831/jeatech.v2i2.42777.

G. Mahalisa and Arminarahmah, “Diabetes Classification Analysis Using the Euclidean Distance Method Based on the K-Nearest Neighbors Algorithm,” J. Teknol. Komput. dan Inf., vol. 5, no. 3, pp. 178–182, 2022.

A. Rohman and A. Rufiyanto, “Implementasi Data Mining Dengan Algoritma Decision Tree C4 . 5 Untuk Prediksi Kelulusan Mahasiswa Di Universitas Pandaran,” Proceeding SINTAK 2019, pp. 134–139, 2019.

R. H. R. Hutagaol, B. A. B. Ardiansyah, I. D. I. Daulay, and ..., “Algoritma K-Means dan Decision Tree untuk Prediksi Penerimaan Calon Mahasiswa Pascasarjana pada Universitas Indonesia: K-Means and Decision Tree …,” SENTIMAS Semin. …, pp. 154–161, 2022, [Online]. Available: https://journal.irpi.or.id/index.php/sentimas/article/view/339%0Ahttps://journal.irpi.or.id/index.php/sentimas/article/download/339/126

D. D. S. Fatimah and E. Rahmawati, “Penggunaan Metode Decision Tree dalam Rancang Bangun Sistem Prediksi untuk Kelulusan Mahasiswa,” J. Algoritm., vol. 18, no. 2, pp. 553–561, 2022, doi: 10.33364/algoritma/v.18-2.932.

M. Hidayat, A. Faqih, and T. Suprapti, “IMPLEMENTASI ALGORITMA K-NEAREST NEIGHBOUR UNTUK PREDIKSI KETEPATAN KELULUSAN,” JURSIMA (Jurnal Sist. Inf. dan Manajemen), vol. 10, no. 1, 2022.

R. Sepriansyah, S. D. Purnamasari, K. R. N. Wardani, and N. Halim, “Prediksi Kelulusan Mahasiswa Fakultas Teknik Universitas Bina Darma Menggunakan Algoritma Naïve Bayes,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 8, no. 1, pp. 313–322, 2023, doi: 10.29100/jipi.v8i1.3459.

F. T. Hendrik Saputra, “Penggunaan Metode Fuzzy K–Nearest Neighbor Pada Sistem Prediksi Tingkat Kelulusan Mahasiswa,” J. Dunia Bisnis, vol. 1, no. 1, pp. 1–11, 2021, [Online]. Available: http://duniabisnis.org/index.php/duniabisnis/article/view/9

T. Nasution, “Implementasi Algoritma K-Nearest Neighbor Untuk Penentuan Kelulusan Mahasiswa Tepat Waktu,” J. Perangkat Lunak, vol. 2, no. 1, pp. 1–14, 2020, doi: 10.32520/jupel.v2i1.944.

A. Sabathos Mananta and G. Arther Sandag, “Prediksi Kelulusan Mahasiswa Dalam Memilih Program Magister Menggunakan Algoritma K-NN,” Smart Comp Jurnalnya Orang Pint. Komput., vol. 10, no. 2, pp. 90–96, 2021, doi: 10.30591/smartcomp.v10i2.2488.

H. Rohayani, Rico, K. Kurniawansyah, and A. Harahap Saputra, “Implementasi Data Mining Untuk Memprediksi Kelulusan Mahasiswa Fakultas Sains Dan Teknologi Menggunakan Metode Naive Bayes,” J. V-TECH (VISION Technol. e- ISSN 2622-9315, vol. 5, no. 2, 2022.

H. Rohayani, S. Alam Nur, M. Fauzi, and Rico, “Prediksi Penyebaran Virus COVID-19 Dari Hasil PCR Menggunakan Metode Naïve Bayes,” J. Comput. Syst. Informatics, vol. 4, no. 1, pp. 109–115, 2022.

C. Anisa and Andri, “Penerapan Algoritma K-Nearest Neighbord Untuk Prediksi Penjualan Obat Pada Apotek Kimia Farma ATMO Palembang,” Bina Darma Conf. Comput. Sci., vol. 2, no. 3, pp. 199–208, 2021.




DOI: http://dx.doi.org/10.24014/ijaidm.v7i1.26150

Refbacks

  • There are currently no refbacks.


Office and Secretariat:

Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau

Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942

Click Here for Information


Journal Indexing:

Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti  | SINTA | Dimensions | ICI Index Copernicus 

IJAIDM Stats