ADDITIONAL MENU
Javanese Script Letter Detection Using Faster R-CNN
Abstract
The Javanese script is now rarely used, and some people no longer recognize it. The construction of a Javanese script recognition system based on digital image processing is one of its preservation efforts. This study proposes a model capable of detecting and recognizing Javanese characters using Faster R-CNN to help people who are not familiar with the Javanese script. Faster R-CNN was chosen because it does not require additional processing compared to the previous method and Faster R-CNN has better accuracy and the ability to detect small objects. Faster R-CNN shows good results in text detection, but the use of Faster R-CNN in detecting Javanese script has not been found which makes its performance unknown, so this study will show how Faster R-CNN performs in detecting Javanese script. In this study, Faster R-CNN was able to show good performance by obtaining mean average precision (mAP) values up to 0.8381, accuracy up to 96.31%, precision up to 96.53%, recall up to 96.38 %, and F1-Score up to 96.41%. These results indicate that Faster R-CNN has better results than the previous method and can detect Javanese characters well.
Keywords
Detection; Faster R-CNN; Handwritten; Javanese Script; Text
Full Text:
PDFReferences
“Indonesia.go.id - Digitalisasi Aksara Nusantara agar Lestari.” [Online]. Available: https://indonesia.go.id/kategori/komoditas/2242/digitalisasi-aksara-nusantara-agar-lestari. [Accessed: 06-Nov-2022].
“Sejarah dan Perkembangan Aksara Jawa - MIMDAN.” [Online]. Available: https://merajutindonesia.id/aksara/aksara-jawa. [Accessed: 06-Nov-2022].
“Dinas Kebudayaan (Kundha Kabudayan) Daerah Istimewa Yogyakarta.” [Online]. Available: https://budaya.jogjaprov.go.id/berita/detail/753-aksara-jawa-menolak-punah. [Accessed: 06-Nov-2022].
H. Wang, C. Pan, X. Guo, C. Ji, and K. Deng, “From object detection to text detection and recognition: A brief evolution history of optical character recognition,” Wiley Interdiscip. Rev. Comput. Stat., vol. 13, no. 5, pp. 1–32, 2021, doi: 10.1002/wics.1547.
A. W. Mahastama and L. D. Krisnawati, “Optical character recognition for printed javanese script using projection profile segmentation and nearest centroid classifier,” 2020 Asia Conf. Comput. Commun. ACCC 2020, pp. 52–56, 2020, doi: 10.1109/ACCC51160.2020.9347895.
M. D. Sulistiyo, D. Saepudin, and Adiwijaya, “Optical character recognition using modified direction feature and nested multi layer perceptrons network,” Proceeding - 2012 IEEE Int. Conf. Comput. Intell. Cybern. Cybern. 2012, pp. 30–34, 2012, doi: 10.1109/CyberneticsCom.2012.6381611.
M. L. Afakh, A. Risnumawan, M. E. Anggraeni, M. N. Tamara, and E. S. Ningrum, “Aksara jawa text detection in scene images using convolutional neural network,” Proc. - Int. Electron. Symp. Knowl. Creat. Intell. Comput. IES-KCIC 2017, vol. 2017-Janua, pp. 77–82, 2017, doi: 10.1109/KCIC.2017.8228567.
A. Adole, E. Edirisinghe, B. Li, and C. Bearchell, “Investigation of Faster-RCNN Inception Resnet V2 on Offline Kanji Handwriting Characters,” ACM Int. Conf. Proceeding Ser., 2020, doi: 10.1145/3415048.3416104.
J. Yang, P. Ren, and X. Kong, “Handwriting Text Recognition Based on Faster R-CNN,” Proc. - 2019 Chinese Autom. Congr. CAC 2019, pp. 2450–2454, 2019, doi: 10.1109/CAC48633.2019.8997382.
Q. Xie, K. Zhou, and X. Fan, “A scene text detection algorithm based on ResNet and faster R-CNN,” ACM Int. Conf. Proceeding Ser., pp. 826–829, 2019, doi: 10.1145/3349341.3349521.
S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, 2017, doi: 10.1109/TPAMI.2016.2577031.
B. Liu, W. Zhao, and Q. Sun, “Study of object detection based on Faster R-CNN,” Proc. - 2017 Chinese Autom. Congr. CAC 2017, vol. 2017-Janua, pp. 6233–6236, 2017, doi: 10.1109/CAC.2017.8243900.
J. Huang et al., “Speed/accuracy trade-offs for modern convolutional object detectors,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 3296–3305, 2017, doi: 10.1109/CVPR.2017.351.
L. Tan, T. Huangfu, and L. Wu, “Comparison of YOLO v3, faster R-CNN, and SSD for real-time pill identification,” arXiv. Research Square, 2021, doi: 10.21203/rs.3.rs-668895/v1.
F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size,” pp. 1–13, 2016.
M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for convolutional neural networks,” 36th Int. Conf. Mach. Learn. ICML 2019, vol. 2019-June, pp. 10691–10700, 2019.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 770–778, 2016, doi: 10.1109/CVPR.2016.90.
K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., pp. 1–14, 2015.
J. Deng, W. Dong, R. Socher, L.-J. Li, Kai Li, and Li Fei-Fei, “ImageNet: A large-scale hierarchical image database,” no. May 2014, pp. 248–255, 2010, doi: 10.1109/cvpr.2009.5206848.
M. Shu, “Deep learning for image classification on very small datasets using transfer learning,” Creat. Components, pp. 14–21, 2019.
T. Y. Lin et al., “Microsoft COCO: Common objects in context,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8693 LNCS, no. PART 5, pp. 740–755, 2014, doi: 10.1007/978-3-319-10602-1_48.
A. Paszke et al., “PyTorch: An imperative style, high-performance deep learning library,” Adv. Neural Inf. Process. Syst., vol. 32, no. NeurIPS, 2019.
J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-Excitation Networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 8, pp. 2011–2023, 2020, doi: 10.1109/TPAMI.2019.2913372.
DOI: http://dx.doi.org/10.24014/ijaidm.v6i2.24641
Refbacks
- There are currently no refbacks.
Office and Secretariat:
Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau
Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942
Journal Indexing:
Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti | SINTA | Dimensions | ICI Index Copernicus
IJAIDM Stats