ADDITIONAL MENU
Performance Comparison of Data Mining Classification Algorithms on Student Academic Achievement Prediction
Abstract
Academic achievement is one of the benchmarks of student success in carrying out the learning process. Grade Point Average (GPA) is a reference for universities in determining student academic achievement. For universities, academic achievement can be an indicator of determining the success of the learning system and can improve the image of the university. This study aims to determine the prediction of academic achievement results of Pamulang University students with Naive Bayes, C4.5 and KNN, and to determine the comparison results of Naive Bayes, C4.5 and KNN algorithms in predicting the academic achievement of Pamulang University students. The algorithms compared in this study are Naive Bayes, C4.5 and K-Nearest Neighbor (KNN) algorithms, using the factors of gender, age, faculty, regional origin, work status, organisation participation, type of school origin, distance of residence, and parents' profession as artibut. The results of this study show that the KNN algorithm is the algorithm with the greatest accuracy rate of 56.25%, followed by the Naive Bayes algorithm and the C4.5 algorithm with an accuracy rate of 50.00%.
Keywords
Classification, C4.5, K-Nearest Neighbour, Naive Bayes, Academic Achievement
Full Text:
PDFReferences
M. P. . Arinda Fidianti, IMPLEMENTASI MANAJEMEN BERBASIS SEKOLAH DALAM MENINGKATKAN PRESTASI BELAJAR SISWA, 1st ed. yogyakarta: GRE PUBLISHING, 2018.
O. Anselmus Cauna, M. H. Pratiknjo, and D. Deeng, “PERILAKU MAHASISWA ASAL PAPUA DALAM PROSES BELAJAR DI LINGKUNGAN KAMPUS UNIVERSITAS SAM RATULANGI MANADO.”
P. D. S. Arikunto, Dasar-Dasar Evaluasi Pendidikan Edisi 3. Jakarta: PT.Bumi Aksara, 2018.
J. Suntoro, Data Mining: Algoritma dan Implementasi dengan Pemrograman PHP. Elex media komputindo, 2019.
F. A. Hizham, Y. Nurdiansyah, and D. M. Firmansyah, “Implementasi metode Backpropagation Neural Network (BNN) dalam sistem klasifikasi ketepatan waktu kelulusan mahasiswa,” Berk. Sainstek, vol. 6, no. 2, pp. 97–105, 2018, [Online]. Available: https://www.researchgate.net/publication/330446472_Implementasi_Metode_Backpropagation_Neural_Network_BNN_dalam_Sistem_Klasifikasi_Ketepatan_Waktu_Kelulusan_Mahasiswa_Studi_Kasus_Program_Studi_Sistem_Informasi_Universitas_Jember
I. A. Tias Mugi Rahayu, Besse Arnawisuda Ningsi, Isnurani, “KLASIFIKASI KETEPATAN WAKTU KELULUSAN MAHASISWA DENGAN METODE NAÏVE BAYES,” 2021.
A. Wanhari, “Perbandingan Algoritma C4. 5 dan Naive Bayes Untuk Klasifikasi Mustahik,” Fakultas Sains dan Teknologi UIN Syarif Hidayatullah Jakarta., 2018.
S. Widaningsih, “PERBANDINGAN METODE DATA MINING UNTUK PREDIKSI NILAI DAN WAKTU KELULUSAN MAHASISWA PRODI TEKNIK INFORMATIKA DENGAN ALGORITMA C4.5, NAÏVE BAYES, KNN, DAN SVM,” 2019.
A. Saifudin, “Metode Data Mining Untuk Seleksi Calon Mahasiswa,” vol. 10, no. 1, pp. 25–36, 2018.
S. Cahyani, R. Wiryasaputra, and R. Gustriansyah, “Identifikasi Huruf Kapital Tulisan Tangan Menggunakan Linear Discriminant Analysis dan Euclidean Distance,” J. Sist. Inf. Bisnis, vol. 8, no. 1, p. 57, 2018, doi: 10.21456/vol8iss1pp57-67.
F. E. Alfian, I. G. P. S. Wijaya, and F. Bimantoro, “Identifikasi Iris Mata Menggunakan Metode Wavelet Daubechies dan K-Nearest Neighbor,” J. Teknol. Informasi, Komputer, dan Apl. (JTIKA ), vol. 2, no. 1, pp. 1–10, 2020, doi: 10.29303/jtika.v2i1.76.
R. Tarakan, I. T. Saputra, P. Studi, S. Informasi, S. Ppkia, and T. Rahmawati, “Publik Publik pada Harian Radar Tarakan,” pp. 73–77.
P. Purwadi, P. S. Ramadhan, and N. Safitri, “Penerapan Data Mining Untuk Mengestimasi Laju Pertumbuhan Penduduk Menggunakan Metode Regresi Linier Berganda Pada BPS Deli Serdang,” J. SAINTIKOM (Jurnal Sains Manaj. Inform. dan Komputer), vol. 18, no. 1, p. 55, 2019, doi: 10.53513/jis.v18i1.104.
W. Purba, W. Siawin, and . H., “Implementasi Data Mining Untuk Pengelompokkan Dan Prediksi Karyawan Yang Berpotensi Phk Dengan Algoritma K-Means Clustering,” J. Sist. Inf. dan Ilmu Komput. Prima(JUSIKOM PRIMA), vol. 2, no. 2, pp. 85–90, 2019, doi: 10.34012/jusikom.v2i2.429.
A. J. P. Sibarani, “Implementasi Data Mining Menggunakan Algoritma Apriori Untuk Meningkatkan Pola Penjualan Obat,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 7, no. 2, pp. 262–276, 2020, doi: 10.35957/jatisi.v7i2.195.
A. Damuri, U. Riyanto, H. Rusdianto, and M. Aminudin, “Implementasi Data Mining dengan Algoritma Naïve Bayes Untuk Klasifikasi Kelayakan Penerima Bantuan Sembako,” JURIKOM (Jurnal Ris. Komputer), vol. 8, no. 6, p. 219, 2021, doi: 10.30865/jurikom.v8i6.3655.
Y. Yuliana, P. Paradise, and K. Kusrini, “Sistem Pakar Diagnosa Penyakit Ispa Menggunakan Metode Naive Bayes Classifier Berbasis Web,” CSRID (Computer Sci. Res. Its Dev. Journal), vol. 10, no. 3, p. 127, 2021, doi: 10.22303/csrid.10.3.2018.127-138.
I. Junaedi, N. Nuswantari, and V. Yasin, “Perancangan Dan Implementasi Algoritma C4 . 5 Untuk Data Mining,” J. Inf. Syst. Informatics Comput., vol. 3, no. 1, pp. 29–44, 2019, [Online]. Available: http://journal.stmikjayakarta.ac.id/index.php/jisicom/article/view/203%0Ahttp://journal.stmikjayakarta.ac.id/index.php/jisicom/article/download/203/158
M. Y. Putra and D. I. Putri, “Pemanfaatan Algoritma Naïve Bayes dan K-Nearest Neighbor Untuk Klasifikasi Jurusan Siswa Kelas XI,” J. Tekno Kompak, vol. 16, no. 2, pp. 176–187, 2022.
B. S. Amalia, Y. Umaidah, and R. Mayasari, “Analisis Sentimen Review Pelanggan Restoran Menggunakan Algoritma Support Vector Machine Dan K-Nearest Neighbor,” SITEKIN J. Sains, Teknol. dan Ind., vol. 19, no. 1, pp. 28–34, 2021.
E. B. Serelia and M. R. Adin Saf, “Sistem Pendukung Keputusan Penentuan Peminatan Siswa Dengan Menggunakan Metode SAW (Simple Additive Weighting) Pada SMA Negeri Dharma Pendidikan,” Techno.Com, vol. 19, no. 3, pp. 227–236, 2020, doi: 10.33633/tc.v19i3.3498.
Haniah Mahmudah, Okkie Puspitorini, Nur Adi Siswandari, Ari Wijayanti, and Eliya Alfatekha, “Metode Naive Bayes Classifier – Smoothing pada Sensor Smartphone untuk Klasifikasi Aktivitas Pengendara,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 9, no. 3, pp. 268–277, 2020, doi: 10.22146/.v9i3.382.
DOI: http://dx.doi.org/10.24014/ijaidm.v6i1.21874
Refbacks
- There are currently no refbacks.
Office and Secretariat:
Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau
Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942
Journal Indexing:
Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti | SINTA | Dimensions | ICI Index Copernicus
IJAIDM Stats