Glaucoma Identification on Retinal Fundus Image Using Random Forest Method

Iga Novinda Rantaya

Abstract


Glaucoma is a disease caused by a buildup of fluid in the eye that can increase intraocular pressure and cause vision loss. This disease cannot be cured, therefore early detection is very important to prevent total vision loss in sufferers. To reduce the errors of observation and diagnosis from doctors, applied computer vision to detect glaucoma in retinal fundus images. The retinal fundus image is first cropped to remove unnecessary parts, then the color image captured by the fundus camera is converted into a grayscale image. The gray scale image will be extracted using the Gray Level Co-occurrence Matrix (GLCM) method. The extracted features will be processed to create a classification model using the Random Forest method which will determine whether the image identified is normal or glaucoma. A series of experiments were conducted on the comparison of training data and testing data, as well as the number of decision trees. Experiments were also conducted on the size of the image cropping and changes in the value of the distance variable in the GCLM feature extraction process. The results of the experiment on an image size of 720x720 pixels and a distance value of 2, obtained a model with an accuracy of 81%, precision 79% and recall 88% in a data comparison of 80:20, and the number of trees as much as 50. The results show that the more number of decision trees does not increase the number of decision trees. accuracy value significantly.

Keywords


Computer Vision;Fundus;Glaucoma;GLCM;Random Forest

Full Text:

PDF

References


Gupta, B., & Kaur CSIR-, H. (2013). World glaucoma research: A quantitative analysis of research output during 2002-11. In Annals of Library and Information Studies (Vol. 60). http://www.scopus.com/search/]

Claro, M., Santos, L., Silva, W., Araújo, F., Moura, N., & Macedo, A. (2016). Automatic Glaucoma Detection Based on Optic Disc Segmentation and Texture Feature Extraction (Vol. 19, Issue 2).

Goldberg, Ivan., Susanna, Remo. (2017). Glaucoma: How to Save Your Sight. Amsterdam: Kugler Publication.

Meng, N., & Yin, T. (2011). Automatic Glaucoma Diagnosis from Fundus Image. https://doi.org/10.0/Linux-x86_64

Suwanda, A. E., & Juniati, D. (2022). Klasifikasi Penyakit Mata Berdasarkan Citra Fundus Retina Menggunakan Dimensi Fraktal Box Counting Dan Fuzzy K-Means. In Halaman (Vol. 10).

Haleem, M. S., Han, L., van Hemert, J., & Li, B. (2013). Automatic extraction of retinal features from colour retinal images for glaucoma diagnosis: A review. In Computerized Medical Imaging and Graphics (Vol. 37, Issues 7–8, pp. 581–596). https://doi.org/10.1016/j.compmedimag.2013.09.005

Permata, E., Munarto, R., Ginanjar, I., Pendidikan, J., Elektro, T., Keguruan, F., Pendidikan, I., Sultan, U., & Tirtayasa, A. (2016). Klasifikasi Glaukoma Menggunakan Neural Network Backpropagation. Prosiding SENTIA, 8, 158–163.

Masithoh, R. E., Rahardjo, B., Sutiarso, L., & Hardjoko, A. (2011). Computer Vision System to Determine Tomato Quality. In AGRITECH (Vol. 31, Issue 2).

Prince, S. J. D. (2012). Computer vision: models, learning and inference. http://www.computervisionmodels.com.

Wibawanto, H., Susanto, A., Widodo, T. S., & Tjokronegoro, S. M. (2008). Identifikasi Citra Massa Kistik Berdasar Fitur Gray Leve Co-occurrence Matrix. In Seminar Nasional Aplikasi Teknologi Informasi.

Pramunendar, R. . A. , A. P. . N. , S. M. . A. , P. D. . P. , P. D. (2020). Pengenalan Berbasis Citra Dua Dimensi Menggunakan Matlab. Istana Publishing.

Haralick, R. (M), Shanmugam, K., & Dinstein Its’hak. (1973). Textural Features for Image Classification. IEEE Transcactions on Systems, Man, and Cybernetics, 3(6), 610–621.

Ding, S. (2019). Breast cancer pathological image auto-classification using weighted GLCM-SVM. Proceedings - 2019 4th International Conference on Mechanical, Control and Computer Engineering, ICMCCE 2019, 475–480. https://doi.org/10.1109/ICMCCE48743.2019.00113

Paul, A., Mukherjee, D. P., Das, P., Gangopadhyay, A., Chintha, A. R., & Kundu, S. (2018). Improved Random Forest for Classification. IEEE Transactions on Image Processing, 27(8), 4012–4024. https://doi.org/10.1109/TIP.2018.2834830

Breiman, L. (2001). Random Forests (Vol. 45).

Kulkarni, V. Y. , S. P. K. (2013). Random Forest Classifiers :A Survey and Future Research Directions. In International Journal of Advanced Computing (Vol. 36, Issue 1).

Situmorang, G. T., Widodo, A. W., & Rahman, M. A. (2019). Penerapan Metode Gray Level Cooccurence Matrix (GLCM) untuk Ekstraksi Ciri pada Telapak Tangan (Vol. 3, Issue 5). http://j-ptiik.ub.ac.id

Azhari, M., Situmorang, Z., & Rosnelly, R. (2021). Perbandingan Akurasi, Recall, dan Presisi Klasifikasi pada Algoritma C4.5, Random Forest, SVM dan Naive Bayes. JURNAL MEDIA INFORMATIKA BUDIDARMA, 5(2), 640. https://doi.org/10.30865/mib.v5i2.2937

Praseptiyana, W. I., Widodo, A. W., & Rahman, M. A. (2019). Pemanfaatan Ciri Gray Level Co-occurrence Matrix (GLCM) Untuk Deteksi Melasma Pada Citra Wajah (Vol. 3, Issue 11). http://j-ptiik.ub.ac.id




DOI: http://dx.doi.org/10.24014/ijaidm.v6i1.18765

Refbacks

  • There are currently no refbacks.


Office and Secretariat:

Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau

Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942

Click Here for Information


Journal Indexing:

Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti  | SINTA | Dimensions | ICI Index Copernicus 

IJAIDM Stats