ADDITIONAL MENU
Potential for Improvement of Student's English Language with the C4.5 Algorithm
Abstract
Proficiency in English is not a barrier for the Millennial Generation today. Sophisticated technology can also help increase proficiency in English. However, there are still many who do not use this technology to support English proficiency. Apart from not using technology, the millennial generation is also lacking in practicing English in everyday life. There are several factors that can predict the potential for increasing proficiency in English, namely Reading (C1), Practice (C2), Pronunciation (C3), Environment (C4), Technology (C5), English Club (C6), and Listening (C7). These factors become parameters in solving problems that occur. These parameters are used in the Data Mining method, namely Classification C4.5 or what is often called the C4.5 Algorithm. This study aims to determine the potential for increasing proficiency in English. The data processed in this study were 90 respondents from the results of the questionnaire data distributed. The software used in the processing is WEKA 3.8.6 Software. The processing steps are to calculate the Entropy value and Gain value of each attribute, form the root node (node) based on the highest gain value and form a decision tree. The results of the discussion on the Weka 3.8.6 software, the data accuracy rate is 90 % or 81 data and the error rate is around 10 % or 9 Data. From the data of 90 respondents, the factors that influence the potential for increasing proficiency in English are Practice (C2).
Keywords
C4.5 Algoritm;Data Mining;English Language;Classification;Weka
Full Text:
PDFReferences
J. S. Lee, “AUC4.5: AUC-Based C4.5 Decision Tree Algorithm for Imbalanced Data Classification,” IEEE Access, vol. 7, pp. 106034–106042, 2019, doi: 10.1109/ACCESS.2019.2931865.
S. Chandra, S. Sumijan, and E. P. W. Mandala, “Expert System For Diagnosing Hemophilia In Children Using Case Based Reasoning,” Indones. J. Artif. Intell. Data Min., vol. 2, no. 1, pp. 45–51, 2019, doi: 10.24014/ijaidm.v2i1.6681.
J. Nugroho, L. Linawati, and T. Mahatma, “International Journal of Active Learning Analysis of Lecturers Competency Performance Evaluation using Fuzzy Modeling,” Int. J. Act. Learn., vol. 4, no. 2, pp. 99–113, 2019, [Online]. Available: https://journal.unnes.ac.id/nju/index.php/ijal/article/view/20025
O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. E. Mohamed, and H. Arshad, “State-of-the-art in artificial neural network applications: A survey,” Heliyon, vol. 4, no. 11, p. e00938, 2018, doi: 10.1016/j.heliyon.2018.e00938.
Irnanda, “Penerapan Klasifikasi C4.5 Dalam Meningkatkan Kecakapan Berbahasa Inggris dalam Masyarakat,” Semin. Nas. Teknol. Komput. Sains, pp. 304–308, 2020.
Y. I. Kurniawan, A. Fatikasari, M. L. Hidayat, and M. Waluyo, “Prediction for Cooperative Credit Eligibility Using Data Mining Classification With C4.5 Algorithm,” J. Tek. Inform., vol. 2, no. 2, pp. 67–74, 2021, doi: 10.20884/1.jutif.2021.2.2.49.
J. S. Mapa, A. Sison, and R. P. Medina, “A Modified C4.5 Classification Algorithm: With the Discretization Method in Calculating the Goodness Score Equivalent,” ICETAS 2019 - 2019 6th IEEE Int. Conf. Eng. Technol. Appl. Sci., pp. 4–7, 2019, doi: 10.1109/ICETAS48360.2019.9117309.
K. Alpan and G. S. Ilgi, “Classification of Diabetes Dataset with Data Mining Techniques by Using WEKA Approach,” 4th Int. Symp. Multidiscip. Stud. Innov. Technol. ISMSIT 2020 - Proc., 2020, doi: 10.1109/ISMSIT50672.2020.9254720.
A. Thongsook, T. Nunthawarasilp, P. Kraypet, J. Lim, and N. Ruangpayoongsak, “C4.5 Decision Tree against Neural Network on Gait Phase Recognition for Lower Limp Exoskeleton,” 2019 1st Int. Symp. Instrumentation, Control. Artif. Intell. Robot. ICA-SYMP 2019, pp. 69–72, 2019, doi: 10.1109/ICA-SYMP.2019.8646253.
Gunawan, Hanes, and Catherine, “C4 . 5 , K-Nearest Neighbor , Naïve Bayes and Random Forest Algorithms Comparison to Predict Students ’ On Time Graduation,” vol. 4, no. 2, pp. 62–71, 2021.
S. Turnip and P. Siltionga, “Analisis Pola Penyebaran Penyakit dengan Menggunakan Algoritma C4.5,” J. Tek. Inform. Unika St. Thomas, vol. 03, no. 479, pp. 3–7, 2018.
N. Azwanti, “Algoritma C4.5 Untuk Memprediksi Mahasiswa Yang Mengulang Mata Kuliah (Studi Kasus Di Amik Labuhan Batu),” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 9, no. 1, pp. 11–22, 2018, doi: 10.24176/simet.v9i1.1627.
D. Istiawan and L. Khikmah, “Implementation of C4.5 Algorithm for Critical Land Prediction in Agricultural Cultivation Areas in Pemali Jratun Watershed,” Indones. J. Artif. Intell. Data Min., vol. 2, no. 2, p. 67, 2019, doi: 10.24014/ijaidm.v2i2.7569.
J. Eska, “Penerapan Data Mining Untuk Prekdiksi Penjualan Wallpaper Menggunakan Algoritma C4.5 STMIK Royal Ksiaran,” JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. 2, pp. 9–13, 2016.
DOI: http://dx.doi.org/10.24014/ijaidm.v5i2.17333
Refbacks
- There are currently no refbacks.
Office and Secretariat:
Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau
Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942
Journal Indexing:
Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti | SINTA | Dimensions | ICI Index Copernicus
IJAIDM Stats