Vote Detection on Ballots Using Thresholding and Centroid Detection Techniques

Lailatul Qadriah, Nur Hamid

Abstract


General elections are an agenda carried out to elect and determine leaders in each region. One of the important stages in the general election process is the vote-counting stage. This study aims to implement several digital image processing methods. Digital image processing plays an important role in the automatic reading of ballot papers to increase the speed of the vote-counting process. In this study, the process of reading ballot images was conducted to produce numerical data based on the coordinates of specific parts of the image. Image processing was performed using GNU Octave software, which is simple yet effective in detecting votes on ballot papers and converting them into numerical data based on centroid coordinates. This method has advantages in terms of implementation simplicity and computational efficiency. The main stages of this study include image conversion to grayscale, thresholding, black pixel detection, segmentation, centroid coordinate detection of punched ballot marks, and conversion into numerical form. In this study, 47 ballot image samples were used. The results of this study show that this method can achieve an accuracy rate of 78.7%.


Full Text:

PDF

References


E. F. Agyemang, E. N. N. Nortey, R. Minkah, and K. Asah-Asante, “Baseline comparative analysis

and review of election forensics: Application to Ghana’s 2012 and 2020 presidential elections,”

Heliyon, vol. 9, no. 8, p. e18276, Aug. 2023, doi: 10.1016/j.heliyon.2023.e18276.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time

Object Detection,” May 09, 2016, arXiv: arXiv:1506.02640. doi: 10.48550/arXiv.1506.02640.

T. Ji, E. Kim, R. Srikantan, A. Tsai, A. Cordero, and D. Wagner, “An Analysis of Write-in Marks on

Optical Scan Ballots”.

R. C. Gonzalez and R. E. Woods, Digital Image Processing, Third Edition, 3rd ed., vol. 14. 2008.

Accessed: May 03, 2025. [Online]. Available:

http://biomedicaloptics.spiedigitallibrary.org/article.aspx?doi=10.1117/1.3115362

J. Valente, J. António, C. Mora, and S. Jardim, “Developments in Image Processing Using Deep

Learning and Reinforcement Learning,” J. Imaging, vol. 9, no. 10, p. 207, Sept. 2023, doi:

3390/jimaging9100207.

V. M. Mohan, R. Kanaka Durga, S. Devathi, and K. Srujan Raju, “Image Processing Representation

Using Binary Image; Grayscale, Color Image, and Histogram,” in Proceedings of the Second

International Conference on Computer and Communication Technologies, vol. 381, S. C. Satapathy,

K. S. Raju, J. K. Mandal, and V. Bhateja, Eds., in Advances in Intelligent Systems and Computing,

R. Dijaya, Buku Ajar Pengolahan Citra Digital. Umsida Press, 2023. doi: 10.21070/2023/978-623-

-075-5.

R. C. Gonzalez and R. E. Woods, Digital image processing, Fourth edition, Global edition. New York:

Pearson, 2017.

V. P.Parmar and C. Kumbharana, “Comparing Linear Search and Binary Search Algorithms to Search

an Element from a Linear List Implemented through Static Array, Dynamic Array and Linked List,”

Int. J. Comput. Appl., vol. 121, no. 3, pp. 13–17, July 2015, doi: 10.5120/21519-4495.

R. Guha, “GRID SEARCHING Novel way of Searching 2D Array,” Int. J. Comput. Appl. Technol.

Res., vol. 5, no. 1, pp. 26–33, Jan. 2016, doi: 10.7753/IJCATR0501.1005.

D. Amato, G. Lo Bosco, and R. Giancarlo, “Standard versus uniform binary search and their variants

in learned static indexing: The case of the searching on sorted data benchmarking software platform,”

Softw. Pract. Exp., vol. 53, no. 2, pp. 318–346, Feb. 2023, doi: 10.1002/spe.3150.

M. Arzt et al., “LABKIT: Labeling and Segmentation Toolkit for Big Image Data,” Front. Comput.

Sci., vol. 4, p. 777728, Feb. 2022, doi: 10.3389/fcomp.2022.777728.

M. Ameur, M. Habba, and Y. Jabrane, “A comparative study of nature inspired optimization

algorithms on multilevel thresholding image segmentation,” Multimed. Tools Appl., vol. 78, no. 24, pp.

–34372, Dec. 2019, doi: 10.1007/s11042-019-08133-8.

C. Sager, C. Janiesch, and P. Zschech, “A survey of image labelling for computer vision applications,”

J. Bus. Anal., vol. 4, no. 2, pp. 91–110, July 2021, doi: 10.1080/2573234X.2021.1908861.

U. Upadhyay and S. Gupta, “A Survey on Image Feature Extraction Techniques,” Int. J. Sci. Res., vol.

, no. 3, 2024.

M. Isik, “Comprehensive empirical evaluation of feature extractors in computer vision,” PeerJ

Comput. Sci., vol. 10, p. e2415, Nov. 2024, doi: 10.7717/peerj-cs.2415.

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using Mathlab, vol. 57.

Tom Robbins, 1991. Accessed: May 15, 2025. [Online]. Available:

https://journals.sagepub.com/doi/10.1177/003754979105700407

S. Lockhart and E. Tilleson, An Engineer’s Introduction to Programming with MATLAB 2017. SDC

Publications, 2017. [Online]. Available: https://www.sdcpublications.com/Textbooks/EngineersIntroduction-Programming-MATLAB-2017/ISBN/978-1-63057-125-2/

R. Singh and S. Gulwani, “Learning Semantic String Transformations from Examples,” presented at

the Proceedings of the VLDB Endowment, VLDB Endowment, Apr. 2012, pp. 740–751. Accessed:

June 16, 2025. [Online]. Available: http://arxiv.org/abs/1204.6079

P. Cerda and G. Varoquaux, “Encoding high-cardinality string categorical variables,” IEEE Trans.

Knowl. Data Eng., vol. 34, no. 3, pp. 1164–1176, Mar. 2022, doi: 10.1109/TKDE.2020.2992529.

I. P. Mulya, I. M. Murjana, and Irianto, “Analisis Perbandingan dan Tingkat Akurasi Metode Altman

Z-Score, Zmijewski, Springate dan Grover dalam Memprediksi Kebangkrutan Perusahaan,” J. Ilm.

Manaj., vol. 3, no. 1, p. 11, Oct. 2024.




DOI: http://dx.doi.org/10.24014/sitekin.v23i1.38937

Refbacks

  • There are currently no refbacks.


Copyright (c) 2026 SITEKIN: Jurnal Sains, Teknologi dan Industri




Editorial Address:
FAKULTAS SAINS DAN TEKNOLOGI
UIN SULTAN SYARIF KASIM RIAU

Kampus Raja Ali Haji
Gedung Fakultas Sains & Teknologi UIN Suska Riau
Jl.H.R.Soebrantas No.155 KM 18 Simpang Baru Panam, Pekanbaru 28293
Email: sitekin@uin-suska.ac.id
© 2023 SITEKIN, ISSN 2407-0939

SITEKIN Journal Indexing:

Google Scholar | Garuda | Moraref | IndexCopernicus | SINTA


Creative Commons License
SITEKIN by http://ejournal.uin-suska.ac.id/index.php