Detection of Rice Malnutrition Based on Leaf Imagery with the Convolutional Neural Network (CNN) Algorithm
Abstract
Rice is a plant that has an important role in meeting food needs in Indonesia. However, the growth and production of rice plants can be disrupted by several factors, including environmental conditions and plant health. Malnutrition of rice plants is a serious problem that can reduce crop yields and rice quality. This research aims to explore and identify malnutrition of rice leaves and evaluate its impact on farmers. In this research, researchers used the CNN algorithm as a framework to create a better identification model. Through this research, researchers hope to provide a deeper understanding of malnutrition in rice plants and provide valuable insights for farmers. Researchers also attempt to offer solutions or recommendations that can be implemented to overcome this problem. To solve the problems raised, researchers collected and analyzed data from various sources, including Kaggle. Researchers also researched agricultural offices to gain diverse perspectives on this issue. The research results show that the accuracy level of the identification model is 98.89% and contributes to the general understanding of rice leaf malnutrition. Researchers hope that these findings can encourage further discussion and relevant action in the context of dealing with malnutrition in plants. Researchers realize that every problem has certain limitations and limitations. Therefore, researchers suggest that further research be carried out to deepen understanding and overcome obstacles found during this research.
Full Text:
PDFReferences
M. H. Aabidi, A. EL Makrani, B. Jabir, and I. Zaimi, “A Model Proposal for Enhancing Leaf Disease Detection Using Convolutional Neural Networks (CNN): Case Study.,” Int. J. Online Biomed. Eng., vol. 19, no. 12, 2023.
R. Muslim, Z. Zaeniah, A. Akbar, B. Imran, and Z. Zaenudin, “Disease Detection of Rice and Chili Based on Image Classification Using Convolutional Neural Network Android-Based,” J. Pilar Nusa Mandiri, vol. 19, no. 2, pp. 85–96, 2023.
T. Rashid, M. M. Mokji, and M. Rasheed, “Cracked concrete surface classification in low-resolution images using a convolutional neural network,” J. Opt., pp. 1–13, 2024.
T. J. Nandhini and K. Thinakaran, “Object Detection Algorithm Based on Multi-Scaled Convolutional Neural Networks,” in 2023 3rd International conference on Artificial Intelligence and Signal Processing (AISP), IEEE, 2023, pp. 1–5.
A. Shah et al., “A comprehensive study on skin cancer detection using artificial neural network (ANN) and convolutional neural network (CNN),” Clin. eHealth, 2023.
Q. Li, G. Chen, and L. Luo, “Mineral prospectivity mapping using attention-based convolutional neural network,” Ore Geol. Rev., vol. 156, p. 105381, 2023.
A. E. Ilesanmi, T. Ilesanmi, and G. A. Gbotoso, “A systematic review of retinal fundus image segmentation and classification methods using convolutional neural networks,” Healthc. Anal., vol. 4, p. 100261, 2023.
T. W. Qurâ, “Implementasi Metode Convolutional Neural Network (CNN) untuk Klasifikasi Motif pada Citra Sasirangan,” Madani J. Ilm. Multidisiplin, vol. 1, no. 7, 2023.
M. H. Kurniawan, “APLIKASI IDENTIFIKASI KENDARAAN KARYAWAN DENGAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN),” Sci. J. Ilm. Sains dan Teknol., vol. 2, no. 2, pp. 251–255, 2024.
F. A. Febriyanti, “Image Processing Dengan Metode Convolutional Neural Network (Cnn) Untuk Deteksi Penyakit Kulit Pada Manusia,” Kohesi J. Sains dan Teknol., vol. 3, no. 10, pp. 21–30, 2024.
R. Arifuddin and B. F. Hidayatulail, “Klasifikasi Penyakit Pneumonia menggunakan Metode Convolutional Neural Network (CNN),” Techné J. Ilm. Elektrotek., vol. 23, no. 2, pp. 233–244, 2024.
R. Aryanto, M. A. Rosid, and S. Busono, “Penerapan Deep Learning untuk Pengenalan Tulisan Tangan Bahasa Aksara Lota Ende dengan Menggunakan Metode Convolutional Neural Networks,” J. Inf. dan Teknol., pp. 258–264, 2023.
D. I. Permatasari, “IMPLEMENTASI METODE CONVOLUTIONAL NEURAL NETWORK (CNN) UNTUK KLASIFIKASI TANAMAN HERBAL BERDASARKAN CITRA DAUN,” Kohesi J. Sains dan Teknol., vol. 3, no. 9, pp. 1–10, 2024.
S. Mehta, V. Kukreja, A. Bansal, K. Kaur, and A. Singh, “Exploring the Potential of Convolutional Neural Networks in Automatic Diagnosis of Dragon Fruit Diseases from Plant Photographs,” in 2023 7th International Conference on Intelligent Computing and Control Systems (ICICCS), IEEE, 2023, pp. 536–540.
M. Reyad, A. M. Sarhan, and M. Arafa, “A modified Adam algorithm for deep neural network optimization,” Neural Comput. Appl., vol. 35, no. 23, pp. 17095–17112, 2023.
DOI: http://dx.doi.org/10.24014/sitekin.v22i1.33199
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 SITEKIN: Jurnal Sains, Teknologi dan Industri
Editorial Address: FAKULTAS SAINS DAN TEKNOLOGI UIN SULTAN SYARIF KASIM RIAU Kampus Raja Ali Haji Gedung Fakultas Sains & Teknologi UIN Suska Riau Jl.H.R.Soebrantas No.155 KM 18 Simpang Baru Panam, Pekanbaru 28293 Email: sitekin@uin-suska.ac.id © 2023 SITEKIN, ISSN 2407-0939 |
SITEKIN Journal Indexing:
Google Scholar | Garuda | Moraref | IndexCopernicus | SINTA
SITEKIN by http://ejournal.uin-suska.ac.id/index.php