Use of Data Mining Technology to Identify Narcotics Distribution Patterns

Nirwan Moningka, Kusrini Kusrini

Abstract


The abuse of narcotics has become one of the significant social and health problems in various countries worldwide. Conventional methods relying on manual analysis or traditional approaches may not be effective enough in addressing this challenge. Therefore, a more sophisticated and efficient approach is needed to tackle this issue. Data mining uses techniques from statistics, machine learning, and pattern recognition to extract valuable information from large data sets. This research employs data collection methods from the Narcotics Investigation Directorate of the Maluku Regional Police from 2021 to 2023. This data includes profiles of narcotics users, such as the age of the perpetrators, gender, last education level, occupation, location of arrest, and type of narcotic. The aim is to identify the patterns of narcotic distribution in the Maluku Province using data mining techniques, namely the Apriori algorithm, Naive Bayes, Random Forest, and Support Vector Machine (SVM). The exclusion of the age variable was a correct decision, as it resulted in an increase in accuracy. This increase is likely due to the high variation in the age variable. The accuracy improvement was more evident in the Random Forest algorithm compared to Naive Bayes and SVM. Random Forest achieved satisfactory results with an accuracy of 0.96. This indicates that Random Forest is a good algorithm for predicting narcotics user data. These results suggest that the pattern of narcotics distribution is closely associated with specific factors, including the male gender, the highest level of education being high school, a self-employed occupation, arrest locations on public roads, and the type of narcotic being Shabu.

Full Text:

PDF

References


R. D. Situmorang, Sumarno, and N. Hidayati, “Penerapan Data Mining dalam Klasifikasi Pencegahan Narkoba Menggunakan Algoritma Naïve Bayes di BNN Kota Pematangsiantar,” JOMLAI: Journal of Machine Learning and Artificial Intelligence, vol. 1, no. 4, pp. 295–302, Sep. 2022.

I. Sari, R. Kosasih, and D. Indarti, “Clustering and Topic Modeling of Verdicts of Narcotics Cases Using Machine Learning,” Journal of Advanced Computational Intelligence and Intelligent Informatics, vol. 27, no. 6, pp. 1168–1174, Aug. 2023.

C. M. Simamora, H. F. Kennedy, S. Nurhuda, M. Agustiawan, M. Yogi Prawira, and R. Siregar, “Penyalahgunaan Narkoba Pada Remaja Ditinjau Dari Teori Asosiasi Diferensial,” EKOMA : Jurnal Ekonomi, vol. 3, no. 3, pp. 811–817, Mar. 2024.

I. Amal and R. A. Putri, “Clustering Pecandu Narkoba Menggunakan Algoritma K-Means Clustering,” Jurnal Sistem Komputer dan Informatika (JSON), vol. 5, no. 2, pp. 434–443, Dec. 2023.

A. Winarta and W. J. Kurniawan, “Optimasi Cluster K-Means Menggunakan Metode Elbow pada Data Pengguna Narkoba dengan Pemrograman Python,” Jurnal Teknik Informatika Kaputama (JTIK), vol. 5, no. 1, pp. 113–119, Jan. 2021.

B. P. Tomasouw and Y. A. Lesnussa, “Deteksi Penyalahgunaan Narkoba dengan Metode Twin Bounded SVM,” Jurnal Ilmu Matematika dan Terapan, vol. 15, no. 4, pp. 753–760, Dec. 2021.

B. L. Hasibuan, Sofiah, and E. Yolanda, “Pengklasifikasian Data Pasien Tes Urine Dengan Metode Clustering Pada Kantor Badan Narkotika Nasional Provinsi Sumut (BNNP SUMUT),” JUKI : Jurnal Komputer dan Informatika, vol. 4, no. 2, pp. 183–193, Nov. 2022.

N. D. Sari and S. Khoiriah, “Penerapan Metode Asosiasi Pada Toko Afifa Dengan Algoritma Apriori,” INSTINK (Jurnal Inovasi Pendidikan, Teknologi Informasi & Komputer)Teknologi Informasi & Komputer), vol. 1, no. 1, pp. 8–17, Apr. 2022.

W. Ginting, “Pengelompokan Data Pasien Test Urine dengan Metode Clustering pada Kantor Badan Narkotika Nasional,” Jurnal Teknik Informatika Kaputama (JTIK), vol. 5, no. 2, pp. 327–338, Jul. 2021.

E. Yolanda and Suhardi, “Penerapan Algoritma K-Means Clustering Untuk Pengelompokan Data Pasien Rehabilitasi Narkoba,” KILIK: Kajian Ilmiah Informatika dan Komputer, vol. 4, no. 1, pp. 182–191, Aug. 2023.

S. S. M. Ajibade, O. J. Oyebode, J. P. Dayupay, N. G. Gido, A. C. Tabuena, and O. K. T. Kilag, “Data Classification Technique for Assessing Drug Use in Adolescents in Secondary Education,” J Pharm Negat Results, vol. 13, no. 4, pp. 971–977, 2022.

D. Setiadi and R. Syahri, “Penerapan Algoritma Naïve Bayes pada Sistem Prediksi Pengguna Narkoba di Kota Pagar Alam,” JUTIM: Jurnal Teknik Informatika Musiwaras, vol. 7, no. 1, pp. 1–10, Jun. 2022.

U. Azmi, Hendrick, and Humaira, “Pendeteksian Aroma Ganja Kering Menggunakan Algortima Random Forest,” Jurnal Ilmiah Teknologi Sistem Informasi, vol. 4, no. 1, pp. 28–33, Mar. 2023.

R. Dasmasela, B. P. Tomasouw, and Z. A. Leleury, “Penerapan Metode Support Vector Machine (SVM) untuk Mendeteksi Penyalahgunaan Narkoba,” PARAMETER: Jurnal Matematika, Statistika dan Terapannya, vol. 1, no. 2, pp. 111–122, Oct. 2022.

G. B. S. Nugroho, D. Rolliawati, and A. Yusuf, “Sistem Pendukung Keputusan Asesmen Rehabilitasi Narkotika Menggunakan Metode Random Forest Penulis Korespondensi,” Jurnal Sistem Informasi dan Teknologi, vol. 4, no. 1, pp. 29–42, Jun. 2021.

T. A. Setiawan, A. Ilyas, and Arochman, “Komparasi Model Prediksi Penanganan Kasus Narkotika,” Journal of Informatic and Computer Technology, vol. 17, no. 1, pp. 42–48, Apr. 2022.




DOI: http://dx.doi.org/10.24014/sitekin.v22i1.32064

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 SITEKIN: Jurnal Sains, Teknologi dan Industri




Editorial Address:
FAKULTAS SAINS DAN TEKNOLOGI
UIN SULTAN SYARIF KASIM RIAU

Kampus Raja Ali Haji
Gedung Fakultas Sains & Teknologi UIN Suska Riau
Jl.H.R.Soebrantas No.155 KM 18 Simpang Baru Panam, Pekanbaru 28293
Email: sitekin@uin-suska.ac.id
© 2023 SITEKIN, ISSN 2407-0939

SITEKIN Journal Indexing:

Google Scholar | Garuda | Moraref | IndexCopernicus | SINTA


Creative Commons License
SITEKIN by http://ejournal.uin-suska.ac.id/index.php