Prediction of Anime Rating with Hybrid Artificial Neural Networks and Convolutional Neural Networks

M. Nurudduja Al Kautsar, Violita Anggraini, Arif Reza Basirun, Achmad Pratama Rifai

Abstract


This study proposes an innovative approach to predict anime scores by leveraging a combination of Artificial Neural Networks (ANN) and Convolutional Neural Networks (CNN). Tabular data such as source, number of episodes, type, and genre are incorporated alongside the image representation of anime into a holistic model. Evaluation results on the test set show satisfactory performance, with an average loss value of 0.673, Mean Absolute Error (MAE) of 0.654, and Mean Absolute Percentage Error (MAPE) of 9.44%. Training and validation graphs reflect the model's convergence without significant signs of overfitting or underfitting. The integration of information from both data sources yields a model capable of providing accurate predictions of anime scores, contributing to an understanding of trends and preferences in the anime industry, and opening opportunities for the development of similar models in the field of score prediction or other quality evaluations.


Full Text:

PDF

References


Wisnu, "Perubahan Trend Teknologi Yang Berdampak Pada Industri Dan Masyarakat." [Online]. Available: https://myrobin.id/untuk-bisnis/perubahan-trend-teknologi/. [Accessed: November 15, 2023].

K. R. Ririh, N. Laili, A. Wicaksono, and S. Tsurayya, "Studi Komparasi Dan Analisis Swot Pada Implementasi Kecerdasan Buatan (Artificial Intelligence) Di Indonesia," J. Tek. Industri, vol. 15, no. 2, pp. 122–133, 2020.

V. Prakash, S. Raghav, S. Sood, M. Pandey, and M. Arora, "Deep Anime Recommendation System: Recommending Anime Using Collaborative and Content-Based Filtering," in 2022 4th International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), 2022, pp. 718–723.

P. A. Nugroho and G. Hendrastomo, "Anime Sebagai Budaya Populer... (Prista Ardi Nugroho)," J. Pendidik. Sosiologi, vol. 6, no. 3, pp. 1–15, 2017.

R. W. Pratiwi and Y. S. Nugroho, "Prediksi Rating Film Menggunakan Metode Naïve Bayes," Kinabalu, vol. 11, no. 2, pp. 50–57, 2017.

A. Jena, A. Jaiswal, D. Lal, S. Rao, A. Ayubi, and N. Sachdeva, "Recommendation System For Anime Using Machine Learning Algorithms," In Proceedings of the International Conference on Innovative Computing & Communication (ICICC). 2022.

S. Ota, H. Kawata, M. Muta, S. Masuko, and J. I. Hoshino, "Anireco: Japanese anime recommendation system," In Entertainment Computing–ICEC 2017: 16th IFIP TC 14 International Conference, Tsukuba City, Japan, September 18-21, 2017, Proceedings 16, pp. 400-403. Springer International Publishing, 2017.

Nuurshadieq and A.T. Wibowo, "Leveraging side information to anime recommender system using deep learning," In 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), pp. 62-67. IEEE, 2020..

B. Soni, D. Thakuria, N. Nath, N. Das, and B. Boro, "RikoNet: A Novel Anime Recommendation Engine," Multimedia Tools and Applications 82, no. 21 (2023): 32329-32348.

S. Sumera, R. Sirisha, N. Anjum, and K. Vaidehi, "Implementation of CNN and ANN for Fashion-MNIST-Dataset Using Different Optimizers," Indian J. Science Technol., vol. 15, no. 47, pp. 2639–2645, 2022, doi: 10.17485/IJST/v15i47.1821.

N. Akmal, "Lahirnya Anime Sebagai Budaya Populer." [Online]. Available: https://kumparan.com/akm-n/lahirnya-anime-sebagai-budaya-populer-1usNdVIBP7S. [Accessed: Month Day, Year].

A. H. Wijaya, "Artificial Neural Network Untuk Memprediksi Beban Listrik Dengan Menggunakan Metode Backpropagation," J. CoreIT, vol. 5, no. 2, pp. 61–70, 2019.

H. Putra and N. Ulfa, "Jurnal Nasional Teknologi Dan Sistem Informasi Penerapan Prediksi Produksi Padi Menggunakan Artificial Neural Network Algoritma Backpropagation," Nasional Teknologi Dan Sistem Informasi, vol. 02, pp. 100–107, 2020.




DOI: http://dx.doi.org/10.24014/sitekin.v22i1.28390

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 SITEKIN: Jurnal Sains, Teknologi dan Industri




Editorial Address:
FAKULTAS SAINS DAN TEKNOLOGI
UIN SULTAN SYARIF KASIM RIAU

Kampus Raja Ali Haji
Gedung Fakultas Sains & Teknologi UIN Suska Riau
Jl.H.R.Soebrantas No.155 KM 18 Simpang Baru Panam, Pekanbaru 28293
Email: sitekin@uin-suska.ac.id
© 2023 SITEKIN, ISSN 2407-0939

SITEKIN Journal Indexing:

Google Scholar | Garuda | Moraref | IndexCopernicus | SINTA


Creative Commons License
SITEKIN by http://ejournal.uin-suska.ac.id/index.php