Utilization of Electronic Nose to Detect Quality of Meat in the Beef Ribs section

Bayu Hananto, Didit Widiyanto, Ridwan Raafi'udin


This study analyzes the use of Electronic Nose (E-Nose) in detecting the quality of beef on the ribs. This experiment used a variety of gas sensors, and found a significant pattern related to rib meat quality. There are three sensors, namely MQ137, MQ5, and MQ6, which show the value is inversely proportional to the other sensors. An increase in the value of this sensor indicates a decrease in the quality of the ribs. Furthermore, MQ8 gave the highest score in the "Good" and "Excellent" categories, while MQ5 and MQ6 gave the highest score in the "Equal" and "Not Eligible" categories. The analysis revealed that E-Nose has the ability to recognize changes in aroma associated with changes in the quality of rib meat. These results show that E-Nose can provide objective and fast information about the quality of beef in the ribs, which can support the food industry in decision making and product quality control. Further research is needed to optimize the use of sensors and validate this technology in various storage conditions and types of beef.

Full Text:



K. K. Agustina, I. Cahya, G. M. Widyantara, I. B. N. Swacita, A. Dharmayudha, and M. D. Rudyanto, “Nilai gizi dan kualitas fisik daging sapi bali berdasarkan jenis kelamin dan umur,” Bul. Vet. Udayana, vol. 9, no. 2, pp. 156–163, 2017.

B. Bahar, Panduan praktis memilih produk daging sapi. Gramedia Pustaka Utama, 2003. [Online]. Available: https://books.google.co.id/books?id=LTsiHpCCHLEC

Standar Nasional Indonesia, “Mutu karkas dan daging sapi SNI 3932:2008,” Badan Stand. Nas., vol. 3932, p. 2008, 2008.

A. Loutfi, S. Coradeschi, G. K. Mani, P. Shankar, and J. B. B. Rayappan, “Electronic noses for food quality: A review,” J. Food Eng., vol. 144, pp. 103–111, 2015, doi: 10.1016/j.jfoodeng.2014.07.019.

Badan Pusat Statistik, “Peternakan Dalam Angka tahun 2022,” Jakarta, 5301008, 2022.

E. F. Anggara, T. W. Widodo, and D. Lelono, “Deteksi Daging Sapi Menggunakan Electronic Nose Berbasis Bidirectional Associative Memory,” IJEIS (Indonesian J. Electron. Instrum. Syst., vol. 7, no.

, p. 209, 2017, doi: 10.22146/ijeis.25489.

Radi, E. Wahyudi, M. D. Adhityamurti, J. P. L. Y. Putro, Barokah, and D. N. Rohmah, “Freshness assessment of tilapia fish in traditional market based on an electronic nose,” Bull. Electr. Eng. Informatics, vol. 10, no. 5, pp. 2466–2476, 2021, doi: 10.11591/eei.v10i5.3111.

I. Kresnawaty et al., “Electronic nose for early detection of basal stem rot caused by Ganoderma in oil palm,” IOP Conf. Ser. Earth Environ. Sci., vol. 468, no. 1, p. 012029, Mar. 2020, doi: 10.1088/1755-1315/468/1/012029.

L. Capelli, S. Sironi, and R. Del Rosso, Electronic noses for environmental monitoring applications, vol. 14, no. 11. MDPI AG, 2014. doi: 10.3390/s141119979.

N. Firmawati and K. Triyana, “Kelayakan Teknologi Electronic Nose untuk Mendeteksi Urin yang Mengandung Metadon dengan Menggunakan Principal Component Analysis (PCA),” J. Ilmu Fis. |

Univ. Andalas, vol. 8, no. 1, pp. 45–51, 2016, doi: 10.25077/jif.8.1.45-51.2016.

E. A. Baldwin, J. Bai, A. Plotto, and S. Dea, “Electronic noses and tongues: Applications for the food and pharmaceutical industries,” Sensors, vol. 11, no. 5, pp. 4744–4766, 2011, doi: 10.3390/s110504744.

G. Villarrubia, J. F. De Paz, D. Pelki, F. de la Prieta, and S. Omatu, “Virtual organization with fusion knowledge in odor classification,” Neurocomputing, vol. 231, pp. 3–10, 2017, doi:


L. Zhang, F. Tian, and D. Zhang, Electronic Nose: Algorithmic Challenges. 2018. doi: 10.1007/978-981-13-2167-2.

C. A. Lintang, T. W. Widodo, and D. Lelono, “Rancang bangun electronic nose untuk mendeteksi tingkat kebusukan ikan air tawar,” IJEIS, vol. 6, no. 2, pp. 129–140, 2016.

Radi, M. Rivai, and M. H. Purnomo, “Study on electronic-nose-based quality monitoring system for coffee under roasting,” J. Circuits, Syst. Comput., vol. 25, no. 10, 2016, doi:10.1142/S0218126616501164.

C. Zhang, W. Wang, Y. Pan, and S. Zhai, “Rapid gas detection for electronic noses using optimal measurement time search and multi-sensor energy change based feature extraction,” Meas. J. Int. Meas. Confed., vol. 204, 2022, doi: 10.1016/j.measurement.2022.112101.

D. R. Wijaya, R. Sarno, and E. Zulaika, “Electronic nose dataset for beef quality monitoring in uncontrolled ambient conditions,” Data in Brief, vol. 21. pp. 2414–2420, 2018. doi:10.1016/j.dib.2018.11.091.

DOI: http://dx.doi.org/10.24014/sitekin.v21i1.27066


  • There are currently no refbacks.

Copyright (c) 2024 SITEKIN: Jurnal Sains, Teknologi dan Industri

Editorial Address:

Kampus Raja Ali Haji
Gedung Fakultas Sains & Teknologi UIN Suska Riau
Jl.H.R.Soebrantas No.155 KM 18 Simpang Baru Panam, Pekanbaru 28293
Email: sitekin@uin-suska.ac.id
© 2023 SITEKIN, ISSN 2407-0939

SITEKIN Journal Indexing:

Google Scholar | Garuda | Moraref | IndexCopernicus | SINTA

Creative Commons License
SITEKIN by http://ejournal.uin-suska.ac.id/index.php