Characterization and Synthesis Hydroxyapatite from Scallop Mussel Shells Prepared by the Microwave-Assisted Precipitation Methods

Rilo Chandra Muhamadin, Alviani Hesthi Permata Ningtyas, Ilham Arifin Pahlawan, Rizkyansyah Alif Hidayatullah, Rifky Ismail, Deni Fajar Fitriyana, Nur Fadhilah, Gilang Taufiqu Rachman


The need for bone implants is constantly increasing every year as the population of older people, accidents, and bone diseases increase. Various solutions, such as autograft, allograft, and artificial endoprosthesis, have been developed by researchers. Ceramic or bio-ceramic materials become very attractive as bone implants due to their high biocompatibility. One of the most commonly used bio-ceramics today is hydroxyapatite (HAp). Hydroxyapatite is one of the biomaterials that are widely used as biomedical materials, such as bone fillers, bioactive implant coatings, bone tissue repair systems and drug distribution. Kabupaten Gresik is famous for its fisheries, including the scallop mussel shells. The scallop mussel shells (Ruditapes philippinarum) is a species of shells that is widely cultivated in the Kabupaten Gresik. Using scallop mussel shell wastes as hydroxyapatite raw material can reduce shell waste volumes and production costs. Several methods for producing hydroxyapatites include hydrothermal, sol-gel, mechanochemical, wet chemical and microwave methods. Hydroxyapatite synthesis with the microwave method has the advantages of efficient heating, environmentally friendly and economical. This study aims to characterize and synthesize hydroxyapatite using scallop mussel shell waste prepared using microwave-assisted precipitation methods in the Gresik Regency. The research was carried out to convert the scallop mussel shells resulting from calcination with the crystal phase Ca(OH)2 into hydroxyapatite using the microwave method. The synthesis process with the method of microwaves at the power of 450 watts for 2.5 minutes. From the synthesis results, hydroxyapatite was then characterized by XRD and SEM tests. The XRD tests carried out formed 99.1% crystallinity of hydroxyapatite.

Full Text:



K. Lin and J. Chang, “Structure and properties of hydroxyapatite for biomedical applications,” in Hydroxyapatite (HAp) for Biomedical Applications, 2015, pp. 3–19. doi: 10.1016/B978178242033000001-8.

R. Ismail et al., “Design, Manufacturing and Characterization of Biodegradable Bone Screw from PLA Prepared by Fused Deposition Modelling (FDM) 3D Printing Technique,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 103, no. 2, pp. 205–215, 2023, doi: 10.37934/arfmts.103.2.205215.

M. Lombardi, P. Palmero, K. Haberko, W. Pyda, and L. Montanaro, “Processing of a natural hydroxyapatite powder: From powder optimization to porous bodies development,” J. Eur. Ceram. Soc., vol. 31, pp. 2513–2518, 2011, doi: 10.1016/j.jeurceramsoc.2011.02.017.

B. P. S. BPS, “Data Impor Hidroksiapatit,” 2022.

R. Ismail et al., “Synthesis and Characterization of Calcium Carbonate Obtained from Green Mussel and Crab Shells as a Biomaterials Candidate,” Materials (Basel)., vol. 15, no. 16, 2022, doi: 10.3390/ma15165712.

M. Sadat-shojai, M. Khorasani, E. Dinpanah-khoshdargi, and A. Jamshidi, “Acta Biomaterialia Synthesis methods for nanosized hydroxyapatite with diverse structures,” Acta Biomater., vol. 9, no. 8, pp. 7591–7621, 2013, doi: 10.1016/j.actbio.2013.04.012.

A. Shavandi, A. E. D. A. Bekhit, A. Ali, and Z. Sun, “Synthesis of nano-hydroxyapatite (nHA) from waste mussel shells using a rapid microwave method.,” Mater. Chem. Phys., vol. 149, pp. 607–616, Jan. 2015, doi: 10.1016/j.matchemphys.2014.11.016.

X. Zhang and K. S. Vecchio, “Creation of dense hydroxyapatite (synthetic bone) by hydrothermal conversion of seashells,” Mater. Sci. Eng. C, vol. 26, no. 8, pp. 1445–1450, 2006, doi: 10.1016/j.msec.2005.08.007.

D. I. H. P. Mohamad, “Hydroxyapatite Synthesis from Natural Clamshell for Biomedical Application,” UNIVERSITI BRUNEI DARUSSALAM, 2018.

S. Mondal, B. Mondal, A. Dey, and S. S. Mukhopadhyay, “Studies on Processing and Characterization of Hydroxyapatite Biomaterials from Different Bio Wastes,” J. Miner. Mater. Charact. Eng., vol. 11, no. 01, pp. 55–67, 2012, doi: 10.4236/jmmce.2012.111005.

M. Sadat-Shojai, M. Atai, and A. Nodehi, “Design of experiments (DOE) for the optimization of hydrothermal synthesis of hydroxyapatite nanoparticles,” J. Braz. Chem. Soc., vol. 22, no. 3, pp. 571–582, 2011, doi: 10.1590/S0103-50532011000300023.

M. Andrean et al., “Synthesis of hydroxyapatite by hydrothermal and microwave irradiation methods from biogenic calcium source varying pH and synthesis time,” Boletín la Soc. Española Cerámica y Vidr., 2020, doi: 10.1016/j.bsecv.2020.06.003.

V. S. Kattimani, S. Kondaka, and K. P. Lingamaneni, “Hydroxyapatite–-Past, Present, and Future in Bone Regeneration,” Bone Tissue Regen. Insights, vol. 7, pp. 9–19, 2016, doi: 10.4137/btri.s36138.

K. S. Vecchio, X. Zhang, J. B. Massie, M. Wang, and C. W. Kim, “Conversion of bulk seashells to biocompatible hydroxyapatite for bone implants,” Acta Biomater., vol. 3, no. 6, pp. 910–918, 2007, doi: 10.1016/j.actbio.2007.06.003.

M. F. Alif, W. Aprillia, and S. Arief, “A hydrothermal synthesis of natural hydroxyapatite obtained from Corbicula moltkiana freshwater clams shell biowaste,” Mater. Lett., vol. 230, pp. 40–43, 2018, doi: 10.1016/j.matlet.2018.07.034.

Y. Azis, N. Jamarun, Zultiniar, S. Arief, and H. Nur, “Facile Synthesis of hydroxyapatite by hydrothermal method from cockle shell (Anadara granosa),” J. Chem. Pharm. Res., vol. 7, no. 5, pp. 798–804, 2015.

S. Rahayu, D. W. Kurniawidi, and A. Gani, “PEMANFAATAN LIMBAH CANGKANG KERANG MUTIARA (PINCTADA MAXIMA) SEBAGAI SUMBER HIDROKSIAPATIT,” J. Pendidik. Fis. dan Teknol., vol. 4, no. 2, pp. 1–23, 2018.

D. F. Fitriyana, R. Ismail, Y. I. Santosa, S. Nugroho, A. J. Hakim, and M. Syahreza Al Mulqi, “Hydroxyapatite Synthesis from Clam Shell Using Hydrothermal Method : A Review,” in 2019 International Biomedical Instrumentation and Technology Conference, IBITeC 2019, 2019, pp. 7–11. doi: 10.1109/IBITeC46597.2019.9091722.

M. Ni and B. D. Ratner, “Nacre surface transformation to hydroxyapatite in a phosphate buffer solution,” Biomaterials, vol. 24, no. 23, pp. 4323–4331, 2003, doi: 10.1016/S0142-9612(03)00236-9.

T. Laonapakul, “Synthesis of hydroxyapatite from biogenic wastes,” KKU Eng. J., vol. 42, no. III, pp. 269–275, 2015, doi: 10.14456/kkuenj.2015.30.

H. M. P. Anitha, P., “Comprehensive Review of Preparation Methodologies of Nano Hydroxyapatite,” J. Environ. Nanotechnol., vol. 3, no. 1, pp. 101–121, Mar. 2014, doi: 10.13074/jent.2013.12.132058.

G. Gergely et al., “Preparation and characterization of hydroxyapatite from eggshell,” Ceram. Int., vol. 36, no. 2, pp. 803–806, 2010, doi: 10.1016/j.ceramint.2009.09.020.

A. Deptuła, W. Łada, T. Olczak, A. Borello, C. Alvani, and A. Di Bartolomeo, “Preparation of spherical powders of hydroxyapatite by sol-gel process,” J. Non. Cryst. Solids, vol. 148&148, pp. 537–541, 1992.

J. H. Yang, K. H. Kim, C. K. You, T. R. Rautray, and T. Y. Kwon, “Synthesis of spherical hydroxyapatite granules with interconnected pore channels using camphene emulsion,” J. Biomed. Mater. Res. - Part B Appl. Biomater., vol. 99B, no. 1, pp. 150–157, 2011, doi: 10.1002/jbm.b.31882.

R. C. Muhamadin, R. Ismail, A. P. Bayuseno, D. F. Fitriyana, and S. Alamsyah, “Hydroxyapatite Formation Method : A Review,” vol. V, no. 6, pp. 66–70, 2022.

U. Sabu, G. Logesh, M. Rashad, A. Joy, and M. Balasubramanian, “Microwave assisted synthesis of biomorphic hydroxyapatite,” Ceram. Int., vol. 45, no. 6, pp. 6718–6722, Apr. 2019, doi: 10.1016/j.ceramint.2018.12.161.

A. C. Ferro and M. Guedes, “Mechanochemical synthesis of hydroxyapatite using cuttlefish bone and chicken eggshell as calcium precursors,” Mater. Sci. Eng. C, vol. 97, no. October 2018, pp. 124–140, 2019, doi: 10.1016/j.msec.2018.11.083.

M. Irfan, P. S. Suprajaa, R. Praveen, and B. M. Reddy, “Microwave-assisted one-step synthesis of nanohydroxyapetite from fish bones and mussel shells,” Mater. Lett., vol. 282, Jan. 2021, doi: 10.1016/j.matlet.2020.128685.

H. Sajadinia, D. Ghazanfari, K. Naghavii, and H. Naghavi, “Heliyon A comparison of microwave and ultrasound routes to prepare nano-hydroxyapatite fertilizer improving morphological and physiological properties of maize ( Zea mays L . ),” Heliyon, vol. 7, no. April 2020, p. e06094, 2021, doi: 10.1016/j.heliyon.2021.e06094.

G. S. Kumar, E. K. Girija, M. Venkatesh, G. Karunakaran, E. Kolesnikov, and D. Kuznetsov, “One step method to synthesize flower-like hydroxyapatite architecture using mussel shell bio-waste as a calcium source,” Ceram. Int., vol. 43, no. 3, pp. 3457–3461, Feb. 2017, doi: 10.1016/j.ceramint.2016.11.163.

J. Indira and K. S. Malathi, “Materials Today : Proceedings Comparison of template mediated ultrasonic and microwave irradiation method on the synthesis of hydroxyapatite nanoparticles for biomedical applications,” Mater. Today Proc., no. xxxx, 2021, doi: 10.1016/j.matpr.2021.03.028.

S. Dey, M. Das, and V. K. Balla, “Effect of hydroxyapatite particle size, morphology and crystallinity on proliferation of colon cancer HCT116 cells,” Mater. Sci. Eng. C, vol. 39, no. 1, pp. 336–339, 2014, doi: 10.1016/j.msec.2014.03.022.

A. A. Bunaciu, E. gabriela Udriştioiu, and H. Y. Aboul-Enein, “X-Ray Diffraction: Instrumentation and Applications,” Crit. Rev. Anal. Chem., vol. 45, no. 4, pp. 289–299, 2015, doi: 10.1080/10408347.2014.949616.

M. Omidi et al., Characterization of biomaterials. Elsevier Ltd, 2017. doi: 10.1016/B978-0-08-100961-1.00007-4.

O. P. Choudhary and P. ka, “Scanning Electron Microscope: Advantages and Disadvantages in Imaging Components,” Int. J. Curr. Microbiol. Appl. Sci., vol. 6, no. 5, pp. 1877–1882, May 2017, doi: 10.20546/IJCMAS.2017.605.207.

R. Ismail et al., “The Effect of Hydrothermal Holding Time on The Characterization of Hydroxyapatite Synthesized from Green Mussel Shells,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 80, no. 1, pp. 84–93, 2021, doi: 10.37934/ARFMTS.80.1.8493.

M. L. Granados et al., “Biodiesel from sunflower oil by using activated calcium oxide,” Appl. Catal. B Environ., vol. 73, no. 3, pp. 317–326, 2007, doi: 10.1016/j.apcatb.2006.12.017.

C. P. Pebriani et al., “Microwave–assisted precipitation of carbonated hydroxyapatite,” IOP Conf. Series: Journal of Physics: Conf. Series, vol. 1248, no. 2019, pp. 1–6, 2019, doi:10.1088/1742-6596/1248/1/012078

C. Y. Chen et al., “Microwave-assisted sol-gel synthesis of hydroxyapatite nanoparticles,” J. of Beijing Univ of Chem Tech (Natural Science), vol. 46, no. 3, pp. 7-15, 2019, doi: 10.13543/j.bhxbzr.2019.03.002

S. Li et al., “Microwave-assisted co-precipitation synthesis of high purity β-tricalcium phosphate crystalline powders,” Mater Chem Phys, vol. 129. pp. 1138-1141, 2011, doi: 10.1016/j.matchemphys.2011.05.075

Cursaru L. M. et al., “Hydroxyapatite from Natural Sources for Medical Applications,”. Materials (Basel), vol. 22, no. 15, pp. 1-19, doi: 10.3390/ma15155091. PMID: 35897524; PMCID: PMC9331458

Fadhilah N. et al., “Preparation model and standardization of potentially anti-cancer hydroxyapatite nanoparticles from Tegillarca granosa shells,”. AACL Bioflux, vol. 15, no. 4, pp. 1639-1647.



  • There are currently no refbacks.

Copyright (c) 2023 SITEKIN: Jurnal Sains, Teknologi dan Industri

Editorial Address:

Kampus Raja Ali Haji
Gedung Fakultas Sains & Teknologi UIN Suska Riau
Jl.H.R.Soebrantas No.155 KM 18 Simpang Baru Panam, Pekanbaru 28293
© 2023 SITEKIN, ISSN 2407-0939

SITEKIN Journal Indexing:

Google Scholar | Garuda | Moraref | IndexCopernicus | SINTA

Creative Commons License