Dynamic Analysis of a Prey Predator Model with Holling-Type III Functional Response and Anti-Predator Behavior
Abstract
The prey-predator model in this article reviews the interaction of two populations with a type III Holling -type III functional response and anti-predator behavior. The dynamic analysis starts by determining the basic model construction assumptions, equilibrium and stability points, and numerical simulations using Python. Dynamic analysis results obtained four equilibrium points with types of stability, namely. which is unstable, which is asymptotically stable , and . Which is stable under certain conditions. The numerical simulation results show double stability at the equilibrium points. and with the anti-predator behavior parameter value . The anti-predator parameter value indicates a change in stability that is only the equilibrium point. Differences in the values of the anti-predator behavior parameters affect changes in system solutions and impact reducing predator populations.
Full Text:
PDFReferences
R. Ekawati Ningrum, Abadi, and Y. Puji Astuti, “Model Matematika Mangsa Pemangsa Dua Spesies Dengan Fungsi Respon Holling Tipe II Dan Perilaku Anti-Pemangsa,” J. Ilm. Mat. , vol. 7, no. 2, pp. 10–14, 2019.
M. B. Gaib and W. A. Ja’a, “Analisis Kestabilan Model Interaksi Predator-Prey Dengan Fungsi Respon Monod-Haldane Dan Perilaku Anti Pemangsa,” Euler J. Ilm. Mat. Sains dan Teknol., vol. 8, no. 2, pp. 51–59, Dec. 2020, doi: 10.34312/euler.v8i2.10407.
F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, vol. 2. Berlin: Springer, 2012.
A. J. Lotka, Elements of Physical Biology. Baltimore: Williams and Wilkins, 1925.
C. Holling, “The Functional Response of Predator to Prey Density and Its Role in Mimicry and Population Regulation,” Mem. Entomol. Soc. Canada,97, pp. 5–60, 1965.
M. Agarwal and R. Pathak, “Harvesting and Hopf Bifurcation in a Prey-Predator Model with Holling Type IV Functional Response,” Int. J. Math. Soft Comput., vol. 2, no. 1, p. 99, Jan. 2012, doi: 10.26708/ijmsc.2012.1.2.12.
J. H. P. Dawes and M. O. Souza, “A derivation of Holling’s type I, II and III functional responses in predator-prey systems,” 2013.
V. D. Goulart and R. J. Young, “Selfish behavior as an antipredator response in schooling fish?,” Anim. Behav., pp. 443–450, 2013.
C. B. Stanford, “The Influence of Chimpanze Predation on Group Size and Anti-predator Behaviour in Red Colobus Monkeys,” Anim. Behav. 49(3), pp. 577–587, 1995.
S. G. Mortoja, P. Panja, and S. K. Mondal, “Dynamics of A Predator-Prey Model with StageStructure on Both Species and Anti-Predator Behavior,” Informatics Med. Unlocked, 10, pp. 50–57, 2018.
B. Tang and Y. Xiao, “Bifurcation analysis of a predator-prey model with anti-predator behavior,” Chaos, Solitons and Fractals, vol. 70, no. 1, pp. 58–68, 2015, doi: 10.1016/j.chaos.2014.11.008.
S. Saadah, A. Jurusan Matematika, U. Negeri Surabaya, and D. Savitri, “Model Interaksi Mangsa Pemangsa Dengan Fungsi Respon Rasio Dependent Holling Tipe II Dan Perilaku Anti Pemangsa,” J. Ilm. Mat., vol. 7, no. 2, 2019.
P. Panja, S. K. Mondal, and J. Chattopadhyay, “Dynamical Effects of Anti-predator Behaviour of Adult Prey in a Predator-Prey Model with Ratio-dependent Functional Response,” 2017.
D. Savitri, “Dynamics Analysis of Anti-predator Model on Intermediate Predator with Ratio Dependent Functional Responses,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Feb. 2018. doi: 10.1088/1742-6596/953/1/012201.
D. Savitri, “Numerical Study of One Prey-Two Predator Model Considering Food Addition and Anti-Predator Defense,” in E3S Web of Conferences, EDP Sciences, Dec. 2021. doi: 10.1051/e3sconf/202132806003.
S. Sirisubtawee, N. Khansai, and A. Charoenloedmongkhon, “Investigation on dynamics of an impulsive predator–prey system with generalized Holling type IV functional response and anti-predator behavior,” Adv. Differ. Equations, pp. 1–26, 2021.
Y. Tian, Y. Gao, and K. Sun, “A fishery predator-prey model with anti-predator behavior and complex dynamics induced by weighted fishing strategies,” Math. Biosci. Eng., vol. 20, no. 2, pp. 1558–1579, 2023, doi: 10.3934/mbe.2023071.
C. Edwards and D. Penney, Elemantary Differential Equations (six Edition), Six. New York: Pearson Education, Inc, 2008.
C. Y., Z. C., W. W., and J. Wang, “Dynamics of a Leslie–Gowerpredator–prey model with additive Allee effect,” Appl. Math Model., 2014.
G. Cardano, Ars Magna or The rules of Algebra. New York: Dover, 1545.
D. Purnamasari, Faisal, and N. A.J., “Kestabilan Sistem Predator-Prey Leslie,” J. Mat. Murni danTerapan, 3(2), pp. 51–59, 2009.
W. E. Boyce, R. C. Diprima, and D. B. Meade, Elementary Differential Equations and Boundary Value Problems, Eleventh. USA: John Wiley & Sons, 2017.
R. J. Iswanto, Pemodelan Matematika:aplikasi dan terapannya. Yogyakarta: Graha Ilmu, 2012.
A. R. P. Hasizyah and B. Susila, “Analisis Kestabilan Model Prey-Predator Holling Tipe III,” J. Mat. UNAND, vol. 10, no. 1, pp. 29–37, 2020.
DOI: http://dx.doi.org/10.24014/sitekin.v21i1.23024
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 SITEKIN: Jurnal Sains, Teknologi dan Industri
Editorial Address: FAKULTAS SAINS DAN TEKNOLOGI UIN SULTAN SYARIF KASIM RIAU Kampus Raja Ali Haji Gedung Fakultas Sains & Teknologi UIN Suska Riau Jl.H.R.Soebrantas No.155 KM 18 Simpang Baru Panam, Pekanbaru 28293 Email: sitekin@uin-suska.ac.id © 2023 SITEKIN, ISSN 2407-0939 |
SITEKIN Journal Indexing:
Google Scholar | Garuda | Moraref | IndexCopernicus | SINTA
SITEKIN by http://ejournal.uin-suska.ac.id/index.php