Predicting Rupiah Sentiment Using Social Sentiment Analysis
Abstract
Full Text:
PDFReferences
O. Sattarov, H. S. Jeon, R. Oh, and J. D. Lee, “Forecasting Bitcoin Price Fluctuation by Twitter Sentiment Analysis,” in 2020 International Conference on Information Science and Communications Technologies (ICISCT), Nov. 2020, pp. 1–4. doi: 10.1109/ICISCT50599.2020.9351527.
M. E. Basiri, “A novel fusion-based deep learning model for sentiment analysis of COVID-19 tweets,” Knowledge-Based Syst., vol. 228, 2021, doi: 10.1016/j.knosys.2021.107242.
W. Li, “BiERU: Bidirectional emotional recurrent unit for conversational sentiment analysis,” Neurocomputing, vol. 467, pp. 73–82, 2022, doi: 10.1016/j.neucom.2021.09.057.
N. Jing, “A hybrid model integrating deep learning with investor sentiment analysis for stock price prediction,” Expert Syst. Appl., vol. 178, 2021, doi: 10.1016/j.eswa.2021.115019.
W. Yu, “Learning Modality-Specific Representations with Self-Supervised Multi-Task Learning for Multimodal Sentiment Analysis,” 35th AAAI Conference on Artificial Intelligence, AAAI 2021, vol. 12. pp. 10790–10797, 2021. [Online]. Available: https://api.elsevier.com/content/abstract/scopus_id/85130036179
A. Onan, “Sentiment analysis on product reviews based on weighted word embeddings and deep neural networks,” Concurrency and Computation: Practice and Experience, vol. 33, no. 23. 2021. doi: 10.1002/cpe.5909.
M. Mujahid, “Sentiment analysis and topic modeling on tweets about online education during covid-19,” Appl. Sci., vol. 11, no. 18, 2021, doi: 10.3390/app11188438.
A. Ligthart, “Systematic reviews in sentiment analysis: a tertiary study,” Artif. Intell. Rev., vol. 54, no. 7, pp. 4997–5053, 2021, doi: 10.1007/s10462-021-09973-3.
H. Piedrahita-Valdés, “Vaccine hesitancy on social media: Sentiment analysis from June 2011 to April 2019,” Vaccines, vol. 9, no. 1, pp. 1–12, 2021, doi: 10.3390/vaccines9010028.
M. F. K. Fadilla and N. Heriyati, “Influence of Virtual Money on the Rupiah Currency,” IOP Conf. Ser. Mater. Sci. Eng., vol. 662, no. 3, pp. 1–7, 2019, doi: 10.1088/1757-899X/662/3/032066.
S. F. N. Islam, A. Sholahuddin, and A. S. Abdullah, “Extreme gradient boosting (XGBoost) method in making forecasting application and analysis of USD exchange rates against rupiah,” J. Phys. Conf. Ser., vol. 1722, no. 1, 2021, doi: 10.1088/1742-6596/1722/1/012016.
H. Ratnaningtyas, “Pengaruh Foreign Direct Investment, Inflasi, Bi Rate Dan Nilai Kurs Rupiah Terhadap Indeks Harga Saham Gabungan Indeks Di Bursa Efek Indonesia Periode Tahun 2010-2018 ,” Mabiska J. Sekol. Tinggi Ilmu Ekon. Bisnis Indones., vol. 5, no. 1, p. 15, 2020.
S. W. H. Kwok, “Tweet topics and sentiments relating to COVID-19 vaccination among Australian twitter users: Machine learning analysis,” J. Med. Internet Res., vol. 23, no. 5, 2021, doi: 10.2196/26953.
C. A. Melton, “Public sentiment analysis and topic modeling regarding COVID-19 vaccines on the Reddit social media platform: A call to action for strengthening vaccine confidence,” J. Infect. Public Health, vol. 14, no. 10, pp. 1505–1512, 2021, doi: 10.1016/j.jiph.2021.08.010.
F. Rustam, “A performance comparison of supervised machine learning models for Covid-19 tweets sentiment analysis,” PLoS One, vol. 16, no. 2, 2021, doi: 10.1371/journal.pone.0245909.
H. Kaur, “A Proposed Sentiment Analysis Deep Learning Algorithm for Analyzing COVID-19 Tweets,” Inf. Syst. Front., vol. 23, no. 6, pp. 1417–1429, 2021, doi: 10.1007/s10796-021-10135-7.
P. Ghasiya, “Investigating COVID-19 News across Four Nations: A Topic Modeling and Sentiment Analysis Approach,” IEEE Access, vol. 9, pp. 36645–36656, 2021, doi: 10.1109/ACCESS.2021.3062875.
H. Jang, “Tracking COVID-19 discourse on twitter in north america: Infodemiology study using topic modeling and aspect-based sentiment analysis,” J. Med. Internet Res., vol. 23, no. 2, 2021, doi: 10.2196/25431.
K. Garcia, “Topic detection and sentiment analysis in Twitter content related to COVID-19 from Brazil and the USA,” Appl. Soft Comput., vol. 101, 2021, doi: 10.1016/j.asoc.2020.107057.
S. Wen, “Memristive LSTM Network for Sentiment Analysis,” IEEE Trans. Syst. Man, Cybern. Syst., vol. 51, no. 3, pp. 1794–1804, 2021, doi: 10.1109/TSMC.2019.2906098.
M. Wankhade, “A survey on sentiment analysis methods, applications, and challenges,” Artif. Intell. Rev., vol. 55, no. 7, pp. 5731–5780, 2022, doi: 10.1007/s10462-022-10144-1.
K. Wołk, “Advanced social media sentiment analysis for short-term cryptocurrency price prediction,” Expert Syst., vol. 37, no. 2, pp. 1–17, 2020, doi: 10.1111/exsy.12493.
A. Jain, S. Tripathi, H. D. Dwivedi, and P. Saxena, “Forecasting Price of Cryptocurrencies Using Tweets Sentiment Analysis,” in 2018 Eleventh International Conference on Contemporary Computing (IC3), Aug. 2018, pp. 1–7. doi: 10.1109/IC3.2018.8530659.
A. Singh, A. Kumar, and Z. Akhtar, “Bitcoin Price Prediction: A Deep Learning Approach,” Proc. 8th Int. Conf. Signal Process. Integr. Networks, SPIN 2021, pp. 1053–1058, 2021, doi: 10.1109/SPIN52536.2021.9565988.
D. R. Pant, P. Neupane, A. Poudel, A. K. Pokhrel, and B. K. Lama, “Recurrent Neural Network Based Bitcoin Price Prediction by Twitter Sentiment Analysis,” in 2018 IEEE 3rd International Conference on Computing, Communication and Security (ICCCS), Oct. 2018, pp. 128–132. doi: 10.1109/CCCS.2018.8586824.
S. Ranjit, S. Shrestha, S. Subedi, and S. Shakya, “Foreign Rate Exchange Prediction Using Neural Network and Sentiment Analysis,” Proc. - IEEE 2018 Int. Conf. Adv. Comput. Commun. Control Networking, ICACCCN 2018, no. Icacccn, pp. 1173–1177, 2018, doi: 10.1109/ICACCCN.2018.8748819.
F. Akba, I. T. Medeni, M. S. Guzel, and I. Askerzade, “Assessment of Iterative Semi-Supervised Feature Selection Learning for Sentiment Analyses: Digital Currency Markets,” in 2020 IEEE 14th International Conference on Semantic Computing (ICSC), Feb. 2020, pp. 459–463. doi: 10.1109/ICSC.2020.00088.
E. Şaşmaz and F. B. Tek, “Tweet Sentiment Analysis for Cryptocurrencies,” in 2021 6th International Conference on Computer Science and Engineering (UBMK), 2021, pp. 613–618. doi: 10.1109/UBMK52708.2021.9558914.
K. Rathan, S. V. Sai, and T. S. Manikanta, “Crypto-Currency price prediction using Decision Tree and Regression techniques,” in 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), Apr. 2019, pp. 190–194. doi: 10.1109/ICOEI.2019.8862585.
DOI: http://dx.doi.org/10.24014/sitekin.v20i2.22687
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 SITEKIN: Jurnal Sains, Teknologi dan Industri
Editorial Address: FAKULTAS SAINS DAN TEKNOLOGI UIN SULTAN SYARIF KASIM RIAU Kampus Raja Ali Haji Gedung Fakultas Sains & Teknologi UIN Suska Riau Jl.H.R.Soebrantas No.155 KM 18 Simpang Baru Panam, Pekanbaru 28293 Email: sitekin@uin-suska.ac.id © 2023 SITEKIN, ISSN 2407-0939 |
SITEKIN Journal Indexing:
Google Scholar | Garuda | Moraref | IndexCopernicus | SINTA
SITEKIN by http://ejournal.uin-suska.ac.id/index.php