Model Spasial Prediktif Bahaya Bullying di Kota Depok
Abstract
Tujuan dari penelitian ini adalah untuk memprediksi spasial tingkat bahaya bullying di Kota Depok. Kemudian tujuan lainnya adalah seberapa penggunaan data lokasi pendidikan terhadap potensi prediksi kekerasan bullying pada usia remaja di Kota Depok. Metodologi penelitian ini menggunakan analisis multi-kriteria (AHP), kriging, regresi OLS, REML, PLS, GB, RF, dan INLA. Temuan utama pada penelitian ini adalah terjadi perbedaan pengukuran model spasial prediktif yang dikatakan tinggi seperti krigring, GB, REML, dan INLA demikian juga yang terendah seperti PLS dan RF. Temuan berikutnya dari model spasial prediktif tingkat bahaya bullying tercermin dari lokasi kegiatan pelajar usia remaja seperti pendidikan, kegiatan hiburan remaja, pemerintah dan keamanan, fasilitas kesehatan, dan tempat ibadah. Kesimpulan yang diperoleh dalam penelitian ini adalah keseluruhan tingkat bahaya bullying tinggi dengan nilai 0,6 – 0,8.
Keywords
Full Text:
PDFReferences
Akhter, A., Acharjee, U. K., Talukder, Md. A., Islam, Md. M., & Uddin, M. A. (2023). A robust hybrid machine learning model for Bengali cyber bullying detection in social media. Natural Language Processing Journal, 4, 100027. https://doi.org/10.1016/j.nlp.2023.100027
Al-Garadi, M. A., Hussain, M. R., Khan, N., Murtaza, G., Nweke, H. F., Ali, I., Mujtaba, G., Chiroma, H., Khattak, H. A., & Gani, A. (2019). Predicting Cyberbullying on Social Media in the Big Data Era Using Machine Learning Algorithms: Review of Literature and Open Challenges. IEEE Access, 7, 70701–70718. https://doi.org/10.1109/ACCESS.2019.2918354
Battista, K., Diao, L., Patte, K. A., Dubin, J. A., & Leatherdale, S. T. (2023). Examining the use of decision trees in population health surveillance research: an application to youth mental health survey data in the COMPASS study. Health Promotion and Chronic Disease Prevention in Canada, 43(2), 73–86. https://doi.org/10.24095/hpcdp.43.2.03
Borualogo, I. S., Varela, J. J., & de Tezanos-Pinto, P. (2024). Sibling and School Bullying Victimization and Its Relation With Children’s Subjective Well-Being in Indonesia: The Protective Role of Family and School Climate. Journal of Interpersonal Violence. https://doi.org/10.1177/08862605241259412
Brehmer, M. (2023). Perceived Moral Norms in an Extended Theory of Planned Behavior in Predicting University Students’ Bystander Intentions toward Relational Bullying. European Journal of Investigation in Health, Psychology and Education, 13(7), 1202–1218. https://doi.org/10.3390/ejihpe13070089
Convertini, V. N., Gattulli, V., Impedovo, D., & Terrone, G. (2024). Classification bullying/cyberbullying through smartphone sensor and a questionnaire application. Multimedia Tools and Applications, 83(17), 51291–51320. https://doi.org/10.1007/s11042-023-17609-7
Eboy, O. V., Jafar, A., Karim, H. A., Tangit, T. M., Jamru, L. R., Daud, R., Prayitno, E., & Kemarau, R. A. (2024). Identifying Internet Content Risk for Children in Sabah using GIS. International Journal of Geoinformatics, 20(8), 17–28. https://doi.org/10.52939/ijg.v20i8.3445
Giri, S., & Banerjee, S. (2023). Performance analysis of annotation detection techniques for cyber-bullying messages using word-embedded deep neural networks. Social Network Analysis and Mining, 13(1). https://doi.org/10.1007/s13278-022-01023-2
Han, X., Wang, J., Zhang, M., & Wang, X. (2020). Using social media to mine and analyze public opinion related to COVID-19 in China. International Journal of Environmental Research and Public Health, 17(8). https://doi.org/10.3390/ijerph17082788
Hardiyanthy, S. M., & Susanti, D. S. (2019). ANALISIS KRIGING UNTUK MENDETEKSI POLA SPASIAL KASUS DBD DI KABUPATEN TANAH LAUT. Jurnal Matematika Murni Dan Terapan “Εpsilon,” 13(2), 1–8. http://ppjp.ulm.ac.id/journals/index.php/epsilon
Jeong, N. J., & Park, E. (2024). Determinants of South Korean adolescents’ offline and online violence: a structural equation modeling approach. Humanities and Social Sciences Communications, 11(1), 1660. https://doi.org/10.1057/s41599-024-04195-8
Li, Z. (2022). Extracting spatial effects from machine learning model using local interpretation method: An example of SHAP and XGBoost. Computers, Environment and Urban Systems, 96. https://doi.org/10.1016/j.compenvurbsys.2022.101845
Liu, F., Yang, Y., Lin, P., Xiao, Y., Sun, Y., Fei, G., Gu, J., Meng, Y., Jiang, X., Wang, X., Sheng, J., Li, M., Stallones, L., Xiang, H., & Zhang, X. (2024). Associated factors and patterns of school bullying among school-aged adolescents in China: A latent class analysis. Children and Youth Services Review, 156. https://doi.org/10.1016/j.childyouth.2023.107348
Ludwig, G., Zhu, J., Reyes, P., Chen, C. S., & Conley, S. P. (2020). On spline-based approaches to spatial linear regression for geostatistical data. Environmental and Ecological Statistics, 27(2), 175–202. https://doi.org/10.1007/s10651-020-00441-9
Moraga, P., Dean, C., Inoue, J., Morawiecki, P., Noureen, S. R., & Wang, F. (2021). Bayesian spatial modelling of geostatistical data using INLA and SPDE methods: A case study predicting malaria risk in Mozambique. Spatial and Spatio-Temporal Epidemiology, 39. https://doi.org/10.1016/j.sste.2021.100440
Nur, A. A., Sandri, D., Haidar Ahmada, N., & Aulia Purbandini, R. (2024). OPTIMASI PENENTUAN LOKASI INDUSTRI DENGAN GIS-MCA: INTEGRASI TEKNOLOGI UNTUK ANALISIS SPASIAL MENDALAM. Rabit : Jurnal Teknologi Dan Sistem Informasi Univrab, 9(2), 367–380. https://doi.org/10.36341/rabit.v9i2.5012
Qin, F., Guo, C., Liu, D., Xu, S., & Wang, S. (2022). A comparison of ordinary kriging, regression kriging and REML-EBLUP for mapping soil organic matter on a regional scale. Arabian Journal of Geosciences, 15(12). https://doi.org/10.1007/s12517-022-10008-6
Sannigrahi, S., Pilla, F., Basu, B., Basu, A. S., & Molter, A. (2020). Examining the association between socio-demographic composition and COVID-19 fatalities in the European region using spatial regression approach. Sustainable Cities and Society, 62. https://doi.org/10.1016/j.scs.2020.102418
Song, T. M., & Song, J. (2021). Prediction of risk factors of cyberbullying-related words in Korea: Application of data mining using social big data. Telematics and Informatics, 58. https://doi.org/10.1016/j.tele.2020.101524
Tay, E. M. K., & Zamore, S. (2024). Exploring the relationship between the learning environment and bullying: PLS-SEM evidence from Norwegian higher education. Learning Environments Research. https://doi.org/10.1007/s10984-024-09497-x
Tramontano, C., Nocentini, A., Palmerio, L., Losito, B., & Menesini, E. (2020). Mapping community, social, and economic risks to investigate the association with school violence and bullying in Italy. Child Abuse and Neglect, 109. https://doi.org/10.1016/j.chiabu.2020.104746
Useche, S. A., Valle-Escolano, R., Valle, E., & Colomer-Pérez, N. (2023). Gender differences in teenager bullying dynamics and predictors of peer-to-peer intimidation. Heliyon, 9(9). https://doi.org/10.1016/j.heliyon.2023.e20243
Yan, W., Yuan, Y., Yang, M., Zhang, P., & Peng, K. (2023). Detecting the risk of bullying victimization among adolescents: A large-scale machine learning approach. Computers in Human Behavior, 147. https://doi.org/10.1016/j.chb.2023.107817
DOI: http://dx.doi.org/10.24014/jej.v5i2.36357
Refbacks
- There are currently no refbacks.
INDEXED BY:
![]() | ![]() ![]() | ![]() ![]() | ![]() |
![]() ![]() | ![]() ![]() | ![]() ![]() | ![]() |
![]() ![]() | ![]() ![]() | ![]() |
Published By:

This work is licensed under a Creative Commons Attribution 4.0 International License.