Determination of Liquefaction Hazard in Samarinda Using Fuzzy-GIS Method
Abstract
The phenomenon of liquefaction is the transformation of coarse-grained soil from a solid to a liquid state, resulting in a reduction in the bearing capacity of the soil due to an increase in hydrostatic pressure due to a sudden high cyclic load. Liquefaction usually occurs during an earthquake, where earthquake-triggering factors, ground acceleration, water table depth, overburden pressure, soil density, and soil type are used as input data. A fuzzy-GIS approach is used to combine these factors to map liquefaction potential. This method produced a preliminary map of liquefaction potential in Samarinda City. Validation of the Fuzzy-GIS model used field test data to assess liquefaction potential. The technique used in determining the liquefaction hazard zone in Samarinda is fuzzy-GIS processing with the results of field data calculations in CPT tests. The research results are accurate maps of the liquefaction hazard zone of the Samarinda region based on field data validation and Fuzzy-GIS analysis results. Based on the results of this research, the Samarinda area is divided into four zones of liquefaction hazard, ranging from very low to very low and medium to high. This research results in a map of potential liquefaction risk with more than 90% accuracy for prevention and mitigation in Samarinda City.
Keywords
Full Text:
PDFReferences
Allen, G. P. & Chambers, J. L. (1998). Sedimentation in the Modern and Miocene Mahakam Delta. Jakarta, Indonesian Petroleum Association. (pp. 236).
Agung, P. A. M., Sultan, R., Idris, M., Sudjianto, A. T., Ahmad, M. A., & Hasan, M. F. R. (2023). Probabilistic of in Situ Seismic Soil Liquefaction Potential Based on CPT-Data in Central Jakarta, Indonesia. International Journal of Sustainable Construction Engineering and Technology, 14(1), 241–248. https://doi.org/10.30880/ijscet.2023.14.01.021
Agustian, Y. (2021). Likuefaksi. In Yanyan Agustian Jurnal Ilmiah Teknologi Informasi Terapan (Vol. 8, Issue 1).
Arya Pranantya, P., Sukiyah, E., Prasetyo Utomo, ) Edi, Hendarmawan, ), Litbang, P., & Daya, S. (2018). Korelasi nilai sondir terhadap parameter geoteknik dan rembesan pada pondasi tanggul fase e, kalibaru, jakarta utara correlation of cone penetration test value to geotechnical parameters and seepage of e-phase ncicd seawall, kalibaru, north jakarta.
Boulanger, R. W., Idriss, I. M. (2014). Center for geotechnical modeling cpt and spt based liquefaction triggering procedures cpt and spt based liquefaction triggering procedures.
Darman, H. & Sidi, F. H. (2000). An outline of the geology of Indonesia. Jakarta, Ikatan Ahli Geologi Indonesia. (pp. 198).
Das, B. M. (2019). Advanced Soil Mechanics; Fifth Edition. CRC Press Taylor & Francis Group. New York.
Faizana, F., Laila Nugraha, A., & Darmo Yuwono, B. (2015). Pemetaan risiko bencana tanah longsor kota semarang. In Jurnal Geodesi Undip Januari (Vol. 4, Issue 1).
Fajarwati, Y., & Kusuma, R. I. (2021). Analisis Potensi Likuefaksi dan Perbaikan Tanah dengan Stone Column: Studi Kasus pada Coal Shelter PLTU Lontar, Banten. INERSIA: LNformasi Dan Ekspose Hasil Riset Teknik SIpil Dan Arsitektur, 17(1), 27–35. https://doi.org/10.21831/inersia.v17i1.40570.
Hakam, A. (2020). Analisis praktis potensi likuifaksi. ISBN: 978-623-7763-19-2. Andalas Press. Padang.
Hardianto, A., Winardi, D., Rusdiana, D. D., Putri, A. C. E., Ananda, F., Devitasari, Djarwoatmodjo, F. S., Yustika, F., & Gustav, F. (2020). Pemanfaatan Informasi Spasial Berbasis SIG untuk Pemetaan Tingkat Kerawanan Longsor di Kabupaten Bandung Barat, Jawa Barat. Jurnal Geosains Dan Remote Sensing, 1(1), 23–31. https://doi.org/10.23960/jgrs.2020.v1i1.16
Jalil, A., Fathani, T. F., Satyarno, I., & Wilopo, W. (2020). A study on the liquefaction potential in banda aceh city after the 2004 sumatera earthquake. International Journal of GEOMATE, 18(65), 147–155. https://doi.org/10.21660/2020.65.94557
Indra, T., Sutjiningsih, D., Edhi Budhi Soesilo, T., & Kusratmoko, E. (2013). Gis Fuzzy Model For Assessing Vulnerability Of Water Resources In The Upper Citarum Watersheds (Issue 1). www.theinternationaljournal.org
Mase, Z., & Teoretis dan Terapan Bidang Rekayasa Sipil Jurnal Teoretis dan Terapan Bidang Rekayasa Sipil, J. (2017). Experimental Liquefaction Study of Southern Yogyakarta Using Shaking Table. 24(1). https://doi.org/10.5614/jts.2017.24.1.2.
Pusat Studi Gempa Nasional (2017). Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017. Bandung, Kementerian Pekerjaan Umum dan Perumahan Rakyat. (pp. 376).
Robertson, P. k. (2010). Estimating soil unit weight from CPT. 2nd Internasional Symposium on Cone Penetration testing, Huntington Beach, CA, US. California. USA.
Santoso, H., Ssop Bantal, A. ", Das, B., Banjir, P., Longsor, T., & Penanggulangan Bencana, J. (2012). Aplikasi “ssop bantal” berbasis das untuk penanggulangan banjir dan tanah longsor (Vol. 3, Issue 1).
Terzaghi, K. and Peck, R.B., 1948, Soil Mechanics in Engineering Practice, Wiley, New York.
Wijayanto, A. G. (2020). Pemodelan Rekomendasi Tempat Pembungan Sampah Sementara Menggunakan FUZZY OVERLAY Di Kabupaten Semarang.Jurnal Sistem Informasi, Vol.9: 27-35. 571-1916-4-PB. Universitas Kriten Satya Wacana. Salatiga.
Yassar, M. F., Nurul, M., Nadhifah, N., Sekarsari, N. F., Dewi, R., Buana, R., Fernandez, S. N., & Rahmadhita, K. A. (2020). Penerapan Weighted Overlay Pada Pemetaan Tingkat Probabilitas Zona Rawan Longsor di Kabupaten Sumedang, Jawa Barat. Jurnal Geosains Dan Remote Sensing, 1(1), 1–10. https://doi.org/10.23960/jgrs.2020.v1i1.13
Zeffitni, Basir-Cyio, M., Napitupulu, M., & Worosuprojo, S. (2020). Spatial analysis of the liquefaction vulnerability zone based on the phreatic level at the Palu groundwater basin, Central Sulawesi Province. Journal of Physics: Conference Series, 1434(1). https://doi.org/10.1088/1742-6596/1434/1/012019
DOI: http://dx.doi.org/10.24014/jej.v4i2.33050
Refbacks
- There are currently no refbacks.
INDEXED BY:
Published By:
This work is licensed under a Creative Commons Attribution 4.0 International License.